Skip to main content

Layer-by-Layer Assembled Gold Nanoparticles for the Delivery of Nucleic Acids

  • Protocol
  • First Online:
Nanotechnology for Nucleic Acid Delivery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 948))

Abstract

The delivery of nucleic acids to mammalian cells requires a potent particulate carrier system. The physicochemical properties of the used particles, such as size and surface charge, strongly influence the cellular uptake and thereby the extent of the subsequent biological effect. However the knowledge of this process is still fragmentary because heterogeneous particle collectives are applied. Therefore we present a strategy to synthesize carriers with a highly specific appearance on the basis of gold nanoparticles (AuNPs) and the Layer-by-Layer (LbL) technique. The LbL method is based on the alternate deposition of oppositely charged (bio-)polymers, in our case poly(ethylenimine) and nucleic acids. The size and surface charge of those particles can be easily modified and accordingly systematic studies on cellular uptake are accessible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gao X et al (2007) Nonviral gene delivery: what we know and what is next. AAPS J 9:92–104

    Article  Google Scholar 

  2. Mintzer MA, Simanek EE (2009) Nonviral vectors for gene delivery. Chem Rev 109:259–302

    Article  CAS  Google Scholar 

  3. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421

    Article  CAS  Google Scholar 

  4. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237

    Article  CAS  Google Scholar 

  5. Hammond PT (2004) Form and function in multilayer assembly: new applications at the nanoscale. Adv Mater 16:1271–1293

    Article  CAS  Google Scholar 

  6. Ariga K et al (2007) Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys 9:2319–2340

    Article  CAS  Google Scholar 

  7. Lutkenhaus JL, Hammond PT (2007) Electrochemically enabled polyelectrolyte multilayer devices: from fuel cells to sensors. Soft Matter 3:804–816

    Article  CAS  Google Scholar 

  8. Boudou T et al (2010) Multiple functionalities of polyelectrolyte multilayer films: new biomedical applications. Adv Mater 22:441–467

    Article  CAS  Google Scholar 

  9. Decher G, Schlenoff JB (2002) Multilayer thin films: sequential assembly of nanocomposite materials, vol 1. Wiley VCH, Weinheim

    Book  Google Scholar 

  10. Becker AL et al (2010) Layer-by-layer-assembled capsules and films for therapeutic delivery. Small 6:1836–1852

    CAS  Google Scholar 

  11. De Cock LJ et al (2010) Polymeric multilayer capsules in drug delivery. Angew Chem Int Ed Engl 49:6954–6973

    Article  Google Scholar 

  12. Ai H et al (2003) Biomedical applications of electrostatic layer-by-layer nano-assembly of polymers, enzymes, and nanoparticles. Cell Biochem Biophys 39:23–43

    Article  CAS  Google Scholar 

  13. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  14. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782

    Article  CAS  Google Scholar 

  15. Mayhew TM et al (2009) A review of recent methods for efficiently quantifying immunogold and other nanoparticles using TEM sections through cells, tissues and organs. Ann Anat 191:153–170

    Article  CAS  Google Scholar 

  16. Kelly KL et al (2002) The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  Google Scholar 

  17. Cademartiri L, Ozin GA (2009) Concepts of nanochemistry. Wiley-VCH-Verl, Weinheim

    Google Scholar 

  18. Bain CD et al (1989) Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J Am Chem Soc 111:321–335

    Article  CAS  Google Scholar 

  19. Giljohann DA et al (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl 49:3280–3294

    Article  CAS  Google Scholar 

  20. Schneider G, Decher G (2008) Functional core/shell nanoparticles via layer-by-layer assembly. Investigation of the experimental parameters for controlling particle aggregation and for enhancing dispersion stability. Langmuir 24:1778–1789

    Article  CAS  Google Scholar 

  21. Gittins DI, Caruso F (2001) Tailoring the polyelectrolyte coating of metal nanoparticles. J Phys Chem B 105:6846–6852

    Article  CAS  Google Scholar 

  22. Breunig M et al (2007) Breaking up the correlation between efficacy and toxicity for nonviral gene delivery. Proc Natl Acad Sci USA 104:14454–14459

    Article  CAS  Google Scholar 

  23. Boussif O et al (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301

    Article  CAS  Google Scholar 

  24. Sonawane ND et al (2003) Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem 278:44826–44831

    Article  CAS  Google Scholar 

  25. Elbakry A et al (2009) Layer-by-layer assembled gold nanoparticles for siRNA delivery. Nano Lett 9:2059–2064

    Article  CAS  Google Scholar 

  26. Frens G (1973) Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nat Phys Sci 241:20–22

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Breunig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wurster, EC., Elbakry, A., Göpferich, A., Breunig, M. (2013). Layer-by-Layer Assembled Gold Nanoparticles for the Delivery of Nucleic Acids. In: Ogris, M., Oupicky, D. (eds) Nanotechnology for Nucleic Acid Delivery. Methods in Molecular Biology, vol 948. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-140-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-140-0_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-139-4

  • Online ISBN: 978-1-62703-140-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics