Skip to main content

Analyzing Phosphorylation-Dependent Regulation of Subcellular Localization and Transcriptional Activity of Transcriptional Coactivator NT-PGC-1α

  • Protocol
  • First Online:
Peroxisome Proliferator-Activated Receptors (PPARs)

Part of the book series: Methods in Molecular Biology ((MIMB,volume 952))

Abstract

Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is a nuclear transcriptional coactivator that regulates the genes involved in energy metabolism. Recent evidence has been provided that alternative splicing of PPARGC1A gene produces a functional but predominantly cytosolic isoform of PGC-1α (NT-PGC-1α). We have demonstrated that transcriptional coactivation capacity of NT-PGC-1α is directly correlated with its nuclear localization in a PKA phosphorylation-dependent manner. In this chapter, we describe quantitative imaging analysis methods that are developed to measure the relative fluorescence intensity of the protein of interest in the nucleus and cytoplasm in a single cell and the frequency distribution of nuclear/cytoplasmic intensity ratios in the population of cells, respectively. This chapter also describes transient cotransfection and dual-luciferase reporter gene assay that examine the ability of coactivators to activate the transcriptional activity of transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Finck BN, Kelly DP (2006) PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 116:615–622

    Article  PubMed  CAS  Google Scholar 

  2. Handschin C, Spiegelman BM (2006) Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 27:728–735

    PubMed  CAS  Google Scholar 

  3. Schreiber SN, Emter R, Hock MB, Knutti D, Cardenas J, Podvinec M, Oakeley EJ, Kralli A (2004) The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci USA 101:6472–6477

    Article  PubMed  CAS  Google Scholar 

  4. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839

    Article  PubMed  CAS  Google Scholar 

  5. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

    Article  PubMed  CAS  Google Scholar 

  6. Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP (2000) Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106:847–856

    Article  PubMed  CAS  Google Scholar 

  7. Vega RB, Huss JM, Kelly DP (2000) The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 20:1868–1876

    Article  PubMed  CAS  Google Scholar 

  8. Wang YX, Lee CH, Tiep S, Yu RT, Ham J, Kang H, Evans RM (2003) Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 113:159–170

    Article  PubMed  CAS  Google Scholar 

  9. Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M (2001) CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413:179–183

    Article  PubMed  CAS  Google Scholar 

  10. Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413:131–138

    Article  PubMed  CAS  Google Scholar 

  11. Rhee J, Inoue Y, Yoon JC, Puigserver P, Fan M, Gonzalez FJ, Spiegelman BM (2003) Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc Natl Acad Sci USA 100:4012–4017

    Article  PubMed  CAS  Google Scholar 

  12. Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418:797–801

    Article  PubMed  CAS  Google Scholar 

  13. Zhang Y, Huypens P, Adamson AW, Chang JS, Henagan TM, Lenard NR, Burk D, Klein J, Perwitz N, Shin J, Fasshauer M, Kralli A, Gettys TW (2009) Alternative mRNA splicing produces a novel biologically active short isoform of PGC-1{alpha}. J Biol Chem 284:32813–32826

    Article  PubMed  CAS  Google Scholar 

  14. Chang JS, Huypens P, Zhang Y, Black C, Kralli A, Gettys TW (2010) Regulation of NT-PGC-1alpha subcellular localization and function by protein kinase A-dependent modulation of nuclear export by CRM1. J Biol Chem 285:18039–18050

    Article  PubMed  CAS  Google Scholar 

  15. Biggs WH 3rd, Meisenhelder J, Hunter T, Cavenee WK, Arden KC (1999) Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci USA 96:7421–7426

    Article  PubMed  CAS  Google Scholar 

  16. Brunet A, Kanai F, Stehn J, Xu J, Sarbassova D, Frangioni JV, Dalal SN, DeCaprio JA, Greenberg ME, Yaffe MB (2002) 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J Cell Biol 156:817–828

    Article  PubMed  CAS  Google Scholar 

  17. Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18:2195–2224

    Article  PubMed  CAS  Google Scholar 

  18. Sasaki T, Kojima H, Kishimoto R, Ikeda A, Kunimoto H, Nakajima K (2006) Spatiotemporal regulation of c-Fos by ERK5 and the E3 ubiquitin ligase UBR1, and its biological role. Mol Cell 24:63–75

    Article  PubMed  CAS  Google Scholar 

  19. Roux P, Blanchard JM, Fernandez A, Lamb N, Jeanteur P, Piechaczyk M (1990) Nuclear localization of c-Fos, but not v-Fos proteins, is controlled by extracellular signals. Cell 63:341–351

    Article  PubMed  CAS  Google Scholar 

  20. Silver PA, Keegan LP, Ptashne M (1984) Amino terminus of the yeast GAL4 gene product is sufficient for nuclear localization. Proc Natl Acad Sci USA 81:5951–5955

    Article  PubMed  CAS  Google Scholar 

  21. Webb P, Lopez GN, Uht RM, Kushner PJ (1995) Tamoxifen activation of the estrogen receptor/AP-1 pathway: potential origin for the cell-specific estrogen-like effects of antiestrogens. Mol Endocrinol 9:443–456

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Anik Boudreau, Jeho Shin, Yagini Joshi, Chelsea Black, and Peter Huypens for their technical contributions, and David Burk and Courtney Cain for their bioimaging support of this project. This work was supported by NIH RO1 DK074772 (TWG), by a P&F award to JSC from the Pennington NORC (NIH 1P30 DK072476), and in part by NIH grant P20-RR021945 (TWG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Gettys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chang, J.S., Gettys, T.W. (2013). Analyzing Phosphorylation-Dependent Regulation of Subcellular Localization and Transcriptional Activity of Transcriptional Coactivator NT-PGC-1α. In: Badr, M., Youssef, J. (eds) Peroxisome Proliferator-Activated Receptors (PPARs). Methods in Molecular Biology, vol 952. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-155-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-155-4_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-154-7

  • Online ISBN: 978-1-62703-155-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics