Skip to main content

A Tripartite Fusion System for the Selection of Protein Variants with Increased Stability In Vivo

  • Protocol
  • First Online:
Enzyme Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 978))

Abstract

We describe here a genetic selection system that directly links protein stability to antibiotic resistance, allowing one to directly select for mutations that stabilize proteins in vivo. Our technique is based on a tripartite fusion in which the protein to be stabilized is inserted into the middle of the reporter protein β-lactamase via a flexible linker. The gene encoding the inserted protein is then mutagenized using error-prone PCR and the resulting plasmid library plated on media supplemented with increasing concentrations of β-lactam antibiotic. Mutations that stabilize the protein of interest can easily be identified on the basis of their increased antibiotic resistance compared to cells expressing the unmutated tripartite fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Privalov PL, Khechinashvili NN (1974) A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J Mol Biol 86:665–684

    Article  PubMed  CAS  Google Scholar 

  2. Giver L, Gershenson A, Freskgard PO, Arnold FH (1998) Directed evolution of a thermostable esterase. Proc Natl Acad Sci U S A 95:12809–12813

    Article  PubMed  CAS  Google Scholar 

  3. Taverna DM, Goldstein RA (2002) Why are proteins marginally stable? Proteins 46:105–109

    Article  PubMed  CAS  Google Scholar 

  4. Guo HH, Choe J, Loeb LA (2004) Protein tolerance to random amino acid change. Proc Natl Acad Sci U S A 101:9205–9210

    Article  PubMed  CAS  Google Scholar 

  5. Soskine M, Tawfik DS (2010) Mutational effects and the evolution of new protein functions. Nat Rev Genet 11:572–582

    Article  PubMed  CAS  Google Scholar 

  6. Ghaemmaghami S, Oas TG (2001) Quantitative protein stability measurement in vivo. Nat Struct Biol 8:879–882

    Article  PubMed  CAS  Google Scholar 

  7. Ignatova Z, Gierasch LM (2004) Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. Proc Natl Acad Sci U S A 101:523–528

    Article  PubMed  CAS  Google Scholar 

  8. Mayer S, Rudiger S, Ang HC, Joerger AC, Fersht AR (2007) Correlation of levels of folded recombinant p53 in Escherichia coli with thermodynamic stability in vitro. J Mol Biol 372:268–276

    Article  PubMed  CAS  Google Scholar 

  9. Barakat NH, Carmody LJ, Love JJ (2007) Exploiting elements of transcriptional machinery to enhance protein stability. J Mol Biol 366:103–116

    Article  PubMed  CAS  Google Scholar 

  10. Chautard H, Blas-Galindo E, Menguy T, Grand’Moursel L, Cava F, Berenguer J, Delcourt M (2007) An activity-independent selection system of thermostable protein variants. Nat Methods 4:919–921

    Article  PubMed  CAS  Google Scholar 

  11. Waldo GS (2003) Improving protein folding efficiency by directed evolution using the GFP folding reporter. Methods Mol Biol 230:343–359

    PubMed  CAS  Google Scholar 

  12. Foit L, Morgan GJ, Kern MJ, Steimer LR, von Hacht AA, Titchmarsh J, Warriner SL, Radford SE, Bardwell JC (2009) Optimizing protein stability in vivo. Mol Cell 36:861–871

    Article  PubMed  CAS  Google Scholar 

  13. Delaire M, Lenfant F, Labia R, Masson JM (1991) Site-directed mutagenesis on TEM-1 beta-lactamase: role of Glu166 in catalysis and substrate binding. Protein Eng 4:805–810

    Article  PubMed  CAS  Google Scholar 

  14. Hallet B, Sherratt DJ, Hayes F (1997) Pentapeptide scanning mutagenesis: random insertion of a variable five amino acid cassette in a target protein. Nucleic Acids Res 25:1866–1867

    Article  PubMed  CAS  Google Scholar 

  15. Zebala J, Barany F (1991) Mapping catalytically important regions of an enzyme using two-codon insertion mutagenesis: a case study correlating beta-lactamase mutants with the three-dimensional structure. Gene 100:51–57

    Article  PubMed  CAS  Google Scholar 

  16. Galarneau A, Primeau M, Trudeau L-E, Michnick SW (2002) [beta]-Lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein-protein interactions. Nat Biotechnol 20:619–622

    Article  PubMed  CAS  Google Scholar 

  17. Foit L, Mueller-Schickert A, Mamathambika BS, Gleiter S, Klaska CL, Ren G, Bardwell JC (2011) Genetic selection for enhanced folding in vivo targets the Cys14-Cys38 disulfide bond in bovine pancreatic trypsin inhibitor. Antioxid Redox Signal 14:973–984

    Article  PubMed  CAS  Google Scholar 

  18. Quan S, Koldewey P, Tapley T, Kirsch N, Ruane KM, Pfizenmaier J, Shi R, Hofmann S, Foit L, Ren G, Jakob U, Xu Z, Cygler M, Bardwell JC (2011) Genetic selection designed to stabilize proteins uncovers a chaperone called Spy. Nat Struct Mol Biol 18:262–269

    Article  PubMed  CAS  Google Scholar 

  19. Gleiter S, Bardwell JC (2008) Disulfide bond isomerization in prokaryotes. Biochim Biophys Acta 1783:530–534

    Article  PubMed  CAS  Google Scholar 

  20. Watson N (1988) A new revision of the sequence of plasmid pBR322. Gene 70:399–403

    Article  PubMed  CAS  Google Scholar 

  21. Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heyneker HL, Boyer HW, Crosa JH, Falkow S (1977) Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113

    Article  PubMed  CAS  Google Scholar 

  22. Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130

    PubMed  CAS  Google Scholar 

  23. Miyazaki K (2003) Creating random mutagenesis libraries by megaprimer PCR of whole plasmid (MEGAWHOP). Methods Mol Biol 231:23–28

    PubMed  CAS  Google Scholar 

  24. Miyazaki K (2011) MEGAWHOP cloning: a method of creating random mutagenesis libraries via megaprimer PCR of whole plasmids. Methods Enzymol 498:399–406

    Article  PubMed  CAS  Google Scholar 

  25. Labrou NE (2010) Random mutagenesis methods for in vitro directed enzyme evolution. Curr Protein Pept Sci 11:91–100

    Article  PubMed  CAS  Google Scholar 

  26. Rasila TS, Pajunen MI, Savilahti H (2009) Critical evaluation of random mutagenesis by error-prone polymerase chain reaction protocols, Escherichia coli mutator strain, and hydroxylamine treatment. Anal Biochem 388:71–80

    Article  PubMed  CAS  Google Scholar 

  27. Wong TS, Roccatano D, Zacharias M, Schwaneberg U (2006) A statistical analysis of random mutagenesis methods used for directed protein evolution. J Mol Biol 355:858–871

    Article  PubMed  CAS  Google Scholar 

  28. Chusacultanachai S, Yuthavong Y (2004) Random mutagenesis strategies for construction of large and diverse clone libraries of mutated DNA fragments. Methods Mol Biol 270:319–334

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. A. Bardwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer New York

About this protocol

Cite this protocol

Foit, L., Bardwell, J.C.A. (2013). A Tripartite Fusion System for the Selection of Protein Variants with Increased Stability In Vivo. In: Samuelson, J. (eds) Enzyme Engineering. Methods in Molecular Biology, vol 978. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-293-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-293-3_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-292-6

  • Online ISBN: 978-1-62703-293-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics