Skip to main content

Kinetic Modeling of Metabolic Pathways: Application to Serine Biosynthesis

  • Protocol
  • First Online:
Systems Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 985))

Abstract

In this chapter, we describe the steps needed to create a kinetic model of a metabolic pathway using kinetic data from both experimental measurements and literature review. Our methodology is presented by using the example of serine biosynthesis in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lazebnik Y (2002) Can a biologist fix a radio? Or, what I learned while studying apoptosis. Cancer Cell 2:179–182

    Article  CAS  Google Scholar 

  2. Mendes P, Kell D (1998) Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14:869–883

    Article  CAS  Google Scholar 

  3. Szallasi Z, Stelling J, Periwal V (2006) System modeling in cellular biology: from concepts to nuts and bolts. MIT Press, Boston

    Google Scholar 

  4. Pizer LI (1963) The pathway and control of serine biosynthesis in Escherichia coli. J Biol Chem 238:3934–3944

    CAS  Google Scholar 

  5. Kanehisa M, Goto S, Sato Y et al (2012) KEGG for integration and interpretation of large-scale molecular datasets. Nucleic Acids Res 40:D109–D114, http://www.genome.jp/kegg-bin/show_pathway?org_name=eco&mapno=00260

    Article  CAS  Google Scholar 

  6. Keseler IM, Collado-Vides J, Santos-Zavaleta A et al (2011) EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic Acids Res 39:D583–D590, http://ecocyc.org/ECOLI/NEW-IMAGE?object=SERSYN-PWY

    Article  Google Scholar 

  7. Wishart DS, Tzur D, Knox C et al (2007) HMDB: the Human Metabolome Database. Nucleic Acids Res 35:D521–D526

    Article  CAS  Google Scholar 

  8. Scheer M, Grote A, Chang I et al (2010) BRENDA, the enzyme information system in 2011. Nucleic Acids Res 39:D670–D676

    Article  Google Scholar 

  9. Wittig U, Golebiewski M, Kania R et al (2006) SABIO-RK: integration and curation of reaction kinetics data. Lect Notes Bioinformatics 4075:94–103

    Google Scholar 

  10. Hoops S, Sahle S, Gauges R et al (2006) COPASI—a COmplex PAthway SImulator. Bioinformatics 22:3067–3074

    Article  CAS  Google Scholar 

  11. SBML software guide. http://sbml.org/SBML_Software_Guide 17 June 2011

  12. Hucka M, Finney A, Sauro HM et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531

    Article  CAS  Google Scholar 

  13. Le Novère N, Finney A, Hucka M et al (2005) Minimum information requested in the annotation of biochemical models (MIRIAM). Nat Biotechnol 23:1509–1515

    Article  Google Scholar 

  14. Li C, Donizelli M, Rodriguez N et al (2010) BioModels Database: an enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol 4:92

    Article  Google Scholar 

  15. Heijnen JJ (2005) Approximative kinetic formats used in metabolic network modeling. Biotechnol Bioeng 91:534–545

    Article  CAS  Google Scholar 

  16. Liebermeister W, Klipp E (2006) Bringing metabolic networks to life: convenience rate law and thermodynamic constraints. Theor Biol Med Model 3:41

    Article  Google Scholar 

  17. Savageau MA (1976) Biochemical systems analysis: a study of function and design in molecular biology. Addison-Wesley, Boston

    Google Scholar 

  18. Smallbone K, Simeonidis E, Broomhead DS et al (2007) Something from nothing: bridging the gap between constraint-based and kinetic modelling. FEBS J 274:5576–5585

    Article  CAS  Google Scholar 

  19. Visser D, Heijnen JJ (2003) Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics. Metab Eng 5:164–176

    Article  CAS  Google Scholar 

  20. Degtyarenko K, de Matos P, Ennis M et al (2008) ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res 36:D344–D350

    Article  CAS  Google Scholar 

  21. Ao P, Lee LW, Lidstrom ME et al (2008) Towards kinetic modeling of global metabolic networks: Methylobacterium extorquens AM1 growth as validation. Chin J Biotechnol 24:980–994

    Article  CAS  Google Scholar 

  22. Turnaev II, Ibragimova SS, Usuda Y et al (2006) Mathematical modeling of serine and glycine synthesis regulation in Escherichia coli. Proceedings of the fifth international conference on bioinformatics of genome regulation and structure 2:78–83

    Google Scholar 

  23. Zhao G, Winkler ME (1996) A novel alpha-ketoglutarate reductase activity of the serA-encoded 3-phosphoglycerate dehydrogenase of Escherichia coli K-12 and its possible implications for human 2-hydroxyglutaric aciduria. J Bacteriol 178:232–239

    CAS  Google Scholar 

  24. Drewke C, Klein M, Clade D et al (1996) 4-O-phosphoryl-L-threonine, a substrate of the pdxC(serC) gene product involved in vitamin B6 biosynthesis. FEBS Lett 390:179–182

    Article  CAS  Google Scholar 

Download references

Acknowledgements

KS is grateful for the financial support of the EU FP7 (KBBE) grant 289434 “BioPreDyn: New Bioinformatics Methods and Tools for Data-Driven Predictive Dynamic Modelling in Biotechnological Applications.” We thank Daniel Jameson for taking the time to comment on the manuscript. Natalie Stanford acknowledges the support of DirectFuel, a European Union Seventh Framework Programme (FP7-ENERGY-2010-1) under grant agreement n. [256808].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kieran Smallbone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Smallbone, K., Stanford, N.J. (2013). Kinetic Modeling of Metabolic Pathways: Application to Serine Biosynthesis. In: Alper, H. (eds) Systems Metabolic Engineering. Methods in Molecular Biology, vol 985. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-299-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-299-5_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-298-8

  • Online ISBN: 978-1-62703-299-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics