Skip to main content

In Silico Models for Drug Resistance

  • Protocol
  • First Online:
In Silico Models for Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 993))

Abstract

Resistance to drugs that treat infectious disease is a major problem worldwide. The rapid emergence of drug resistance is not well understood. We present two in silico models for the discovery of drug resistance mechanisms and for combating the evolution of resistance, respectively. In the first model, we computationally investigated subgraphs of a biological interaction network that show substantial adaptations when cells transcriptionally respond to a changing environment or treatment. As a case study, we investigated the response of the malaria parasite Plasmodium falciparum to chloroquine and tetracycline treatments. The second model involves a machine learning technique that combines clustering, common distance similarity measurements, and hierarchical clustering to propose new combinations of drug targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pierotti MA, Tamborini E, Negri T et al (2011) Targeted therapy in GIST: in silico modeling for prediction of resistance. Nat Rev Clin Oncol 8:161–170. doi:10.1038/nrclinonc.2011.3

    Article  PubMed  CAS  Google Scholar 

  2. Noble D (2002) Modelling the heart – from genes to cells to the whole organ. Science 295(5560):1678–1682

    Article  PubMed  CAS  Google Scholar 

  3. Hammer GL, Sinclair TR, Chapman SC, Oosterom EV (2004) Scientific correspondence on systems thinking, systems biology and the in silico plant. Plant Physiol 134:909–911

    Article  PubMed  CAS  Google Scholar 

  4. Deville Y, Gilbert D, Helden JV, Wodak SJ (2003) An overview of data models for the analysis of biochemical pathways. Brief Bioinform 4(3):246–259

    Article  PubMed  CAS  Google Scholar 

  5. Crampin EJ, Schnell S (2004) New approaches to modelling and analysis of biochemical reactions, pathways and networks. Prog Biophys Mol Biol 86(1):1–4

    Article  PubMed  Google Scholar 

  6. Noble D, Rudy Y (2001) Models of cardiac ventricular action potentials: iterative interaction between experiment and simulation. Phil Trans R Soc Lond A 359:1127–1142

    Article  Google Scholar 

  7. Van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  Google Scholar 

  8. Stephanopoulos G, Hwang D, Schmitt WA, Mistra J (2002) Mapping physiological states from microarray expression measurements. Bioinformatics 18:1054–1063

    Article  PubMed  CAS  Google Scholar 

  9. Gasch AP, Spellman PT, Kao CM et al (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    PubMed  CAS  Google Scholar 

  10. Spellman PT, Sherlock G, Zhang MQ et al (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridisation. Mol Biol Cell 9:3273–3297

    PubMed  CAS  Google Scholar 

  11. Gardner TS, di Bernardo D, Lorenz D, Collins JJ (2003) Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301:102–105

    Article  PubMed  CAS  Google Scholar 

  12. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, 5th edn. W.H. Freeman, New York, p 1050

    Google Scholar 

  13. Karp PD, Riley M, Pellegrini-Toole A (2002) The MetaCyc database. Nucleic Acids Res 30:59–61

    Article  PubMed  CAS  Google Scholar 

  14. Khodursky AB, Peter BJ, Cozzarelli NR et al (2000) DNA microarray analysis of gene expression in response to physiological and genetic changes that affect tryptophan metabolism in Escherichia coli. Proc Natl Acad Sci USA 97:12170–12175

    Article  PubMed  CAS  Google Scholar 

  15. Neidhardt FC (1996) Escherichia coli and Salmonella: cellular and molecular biology. American Society for Microbiology, Washington, DC

    Google Scholar 

  16. Uetz P, Giot L, Cagney G et al (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    Article  PubMed  CAS  Google Scholar 

  17. Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics l8(Suppl 1):S233–S240

    Article  Google Scholar 

  18. Hanisch D, Zien A, Zimmer R, Lengauer T (2002) Co-clustering of biological networks and gene expression data. Bioinformatics 8(Suppl 1):S145–S154

    Article  Google Scholar 

  19. Zien A, Küffner R, Zimmer R, Lengauer T (2000) Analysis of gene expression data with pathway scores. Proc Int Conf Intell Syst Mol Biol 8:407–417

    PubMed  CAS  Google Scholar 

  20. Karp PD, Ouzounis CA, Moore-Kochlacs C et al (2005) Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res 33:6083–6089

    Article  PubMed  CAS  Google Scholar 

  21. Francke C, Siezen RJ, Teusink B (2005) Reconstructing the metabolic network of a bacterium from its genome. Trends Microbiol 13(11):550–558

    Article  PubMed  CAS  Google Scholar 

  22. König R, Eils R (2004) Gene expression analysis on biochemical networks using the Potts spin model. Bioinformatics 20:1500–1505

    Article  PubMed  Google Scholar 

  23. König R, Schramm G, Oswald M et al (2006) Discovering functional gene expression pattern in the metabolic network of Escherichia coli with wavelets transforms. BMC Bioinformatics 7:119

    Article  PubMed  Google Scholar 

  24. Gunasekera AM, Patankar S, Schug J et al (2003) Drug-induced alterations in gene expression of the asexual blood forms of Plasmodium falciparum. Mol Microbiol 50(4):1229–1239

    Article  PubMed  CAS  Google Scholar 

  25. Dahl EL, Shock JL, Shenai BR et al (2006) Tetracyclines specifically target the apicoplast of the malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother 50(9):3124–3131

    Article  PubMed  CAS  Google Scholar 

  26. Booth KS, Lueker GS (1976) Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-Tree algorithms. J Comput Syst Sci 13:335–379

    Article  Google Scholar 

  27. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, Hillsdale, NJ

    Google Scholar 

  28. Gunasekera AM, Myrick A, Le Roch K et al (2007) Plasmodium falciparum: genome wide perturbations in transcript profiles among mixed stage cultures after chloroquine treatment. Exp Parasitol 117:87–92

    Article  PubMed  CAS  Google Scholar 

  29. Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193:673–675

    Article  PubMed  CAS  Google Scholar 

  30. Le Roch KG, Zhou Y, Blair PL et al (2003) Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301:1503–1508

    Article  PubMed  Google Scholar 

  31. Zhou Y, Abagyan R (2002) Match-only integral distribution (MOID) algorithm for high-density oligonucleotide array analysis. BMC Bioinformatics 3:3

    Article  PubMed  Google Scholar 

  32. Huber W, von Heydebreck A, Sultmann H et al (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(Suppl 1):S96–S104

    Article  PubMed  Google Scholar 

  33. Waller RF, Reed MB, Cowman AF, McFadden GI (2000) Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. EMBO J 19:1794–1802

    Article  PubMed  CAS  Google Scholar 

  34. van Dooren GG, Marti M, Tonkin CJ et al (2005) Development of the endoplasmic reticulum, mitochondrion and apicoplast during the asexual life cycle of Plasmodium falciparum. Mol Microbiol 57:405–419

    Article  PubMed  Google Scholar 

  35. Bozdech Z, Zhu J, Joachimiak MP et al (2003) Expression of the schizont and trophozoite stages of Plasmodium falciparum with a ­long-oligonucleotide microarray. Genome Biol 4:R9

    Article  PubMed  Google Scholar 

  36. Bozdech Z, Llinas M, Pulliam BL et al (2003) The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol 1:E5

    Article  PubMed  Google Scholar 

  37. Brown DE, Huntley CL (1992) A practical application of simulated annealing to clustering. Pattern Recog 25:401–412

    Article  Google Scholar 

  38. Kernighan BW, Lin S (1970) An efficient heuristic procedure for partitioning graphs. Bell Syst Tech J 49:291–307

    Google Scholar 

  39. Dutt S (1993) New faster Kernighan-Lin type graph-partitioning algorithms. In: Proceedings of the 1993 IEEE/ACM international conference on computer-aided design, Santa Clara, CA, pp 370–377

    Google Scholar 

  40. Aarts EHL, van Laarhoven PJM (1985) A new polynomial time cooling schedule. In: Proceedings of the IEEE international conference on computer-aided design, Santa Clara, CA, pp 206–208

    Google Scholar 

  41. Whites SR (1984) Concepts of scale in simulated annealing. In: Proceedings of the IEEE international conference on computer-aided design, Port Chester, NY, pp 646–651

    Google Scholar 

  42. Wellems T, Plowe CW (2001) Chloroquine-resistant malaria. J Infect Dis 184:770–776

    Article  PubMed  CAS  Google Scholar 

  43. Krogstad DJ, Schlesinger PH, Herwaldt BL (1988) Antimalarial agents: mechanism of chloroquine resistance. Antimicrob Agents Chemother 32:799–801

    Article  PubMed  CAS  Google Scholar 

  44. Krogstad DJ, Gluzman IY, Kyle DE et al (1987) Efflux of chloroquine from Plasmodium falciparum: mechanism of chloroquine resistance. Science 238:1283–1285

    Article  PubMed  CAS  Google Scholar 

  45. Ralph SA, D’Ombrain MC, McFadden GI (2001) The apicoplast as an antimalarial drug target. Drug Resist Updat 4:145–151

    Article  PubMed  CAS  Google Scholar 

  46. Fichera ME, Roos DS (1997) A plastic organelle as a drug target in apicomplexan parasites. Nature 390:407–409

    Article  PubMed  CAS  Google Scholar 

  47. He CY, Shaw MK, Pletcher CH et al (2001) A plastic segregation defect in the protozoan parasite Toxomplasma gondii. EMBO J 20:330–339

    Article  PubMed  CAS  Google Scholar 

  48. Fatumo S, Plaimas K, Mallm JP et al (2009) Estimating novel potential drug targets of Plasmodium falciparum by analysing the metabolic network of knock-out strains in silico. Infect Genet Evol 9(3):351–358

    Article  PubMed  CAS  Google Scholar 

  49. Fatumo S, Plaimas K, Adebiyi E, König R (2011) Comparing metabolic network models based on genomic and automatically inferred enzyme information from Plasmodium and its human host to define drug targets in silico. Infect Genet Evol 11(4):708–715

    Article  PubMed  CAS  Google Scholar 

  50. Fatumo S, Adebiyi E, Schramm G et al (2009) An in-silico approach to design efficient malaria drug targets to combat the malaria resistance problem. Presented at the Computer Science and Information Technology Spring Conference, Singapore, 17–20 Apr 2009. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5169419&tag=1

  51. Raymond J, Segrè D (2006) The effect of oxygen on biochemical network and their evolution of complex life. Science 311:1764–1767

    Article  PubMed  CAS  Google Scholar 

  52. Sturn A, Quackenbush J, Trajanoski Z (2003) Client-server environment for high-performance gene expression data analysis. Bioinformatics 19:772–773

    Article  PubMed  CAS  Google Scholar 

  53. Bozdech Z, Llinas M, Pulliam BL et al (2003) The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol 1:85–100

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Many thanks go to Karine Le Roch, Svetlana Bulashesva, Benedikt Brors, Gunnar Schramm, Anna-Lena Kranz, Roland Eils, and Rainer Koenig for many useful discussions and contributions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fatumo, S., Adebiyi, M., Adebiyi, E. (2013). In Silico Models for Drug Resistance. In: Kortagere, S. (eds) In Silico Models for Drug Discovery. Methods in Molecular Biology, vol 993. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-342-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-342-8_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-341-1

  • Online ISBN: 978-1-62703-342-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics