Skip to main content

An In Silico Model for Interpreting Polypharmacology in Drug–Target Networks

  • Protocol
  • First Online:
In Silico Models for Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 993))

Abstract

Recent analysis on polypharmacology leads to the idea that only small fragments of drugs and targets are a key to understanding their interactions forming polypharmacology. This idea motivates us to build an in silico approach of finding significant substructure patterns from drug–target (molecular graph–amino acid sequence) pairs. This article introduces an efficient in silico method for enumerating, from given drug–target pairs, all frequent subgraph–subsequence pairs, which can then be further examined by hypothesis testing for statistical significance. Unique features of the method are its scalability, computational efficiency, and technical soundness in terms of computer science and statistics. The presented method was applied to 11,219 drug–target pairs in DrugBank to obtain significant substructure pairs, which can divide most of the original 11,219 pairs into eight highly exclusive clusters, implying that the obtained substructure pairs are indispensable components for interpreting polypharmacology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apsel B, Blair J, Gonzalez B, Nazif T, Feldman M, Aizenstein B, Hoffman R, Williams R, Shokat K, Knight Z (2008) Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat Chem Biol 4:691–699

    Article  PubMed  CAS  Google Scholar 

  2. Campillos M, Kuhn M, Gavin A, Jensen L, Bork P (2008) Drug target identification using side-effect similarity. Science 321:263–266

    Article  PubMed  CAS  Google Scholar 

  3. Frantz S (2005) Drug discovery: playing dirty. Nature 437:942–943

    Article  PubMed  CAS  Google Scholar 

  4. Yildirim M, Goh K, Cusick M, Barabasi A, Vidal M (2007) Drug-target network. Nat Biotechnol 25:1119–1126

    Article  PubMed  CAS  Google Scholar 

  5. Morphy R, Rankovic Z (2007) Fragments, network biology and designing multiple ligands. Drug Discov Today 12:156–160

    Article  PubMed  CAS  Google Scholar 

  6. Hopkins A (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690

    Article  PubMed  CAS  Google Scholar 

  7. Paolini G, Shapland R, van Hoorn W, Mason J, Hopkins A (2006) Global mapping of pharmacological space. Nat Biotechnol 24:805–815

    Article  PubMed  CAS  Google Scholar 

  8. Takigawa I, Tsuda K, Mamitsuka H (2011) Mining significant substructure pairs for interpreting polypharmacology in drug-target network. PLoS One 6(2):e16999

    Article  PubMed  CAS  Google Scholar 

  9. Wishart D, Knox C, Guo A, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M (2008) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 36:D901–D906

    Article  PubMed  CAS  Google Scholar 

  10. Han J, Cheng H, Dong X, Yan X (2007) Frequent pattern mining: current status and future directions. Data Min Knowl Discov 15(1):55–86

    Article  Google Scholar 

  11. Cordell H (2002) Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum Mol Genet 11:2463–2468

    Article  PubMed  CAS  Google Scholar 

  12. Pei J, Han J, Mortazavi-Asl B, Wan J, Pinto H, Chen Q, Dayal U, Hsu M-C (2004) Mining sequential patterns by pattern-growth: the PrefixSpan approach. IEEE Trans Knowl Data Eng 16(11):1424–1440

    Article  Google Scholar 

  13. Yan X, Han J (2002) gSpan: graph-based substructure pattern mining. In: IEEE International Conference on Data Mining (ICDM’02), Washington, DC, USA, 9-12, December pp. 721–724

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Takigawa, I., Tsuda, K., Mamitsuka, H. (2013). An In Silico Model for Interpreting Polypharmacology in Drug–Target Networks. In: Kortagere, S. (eds) In Silico Models for Drug Discovery. Methods in Molecular Biology, vol 993. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-342-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-342-8_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-341-1

  • Online ISBN: 978-1-62703-342-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics