Skip to main content

Formation of Amphipathic Amyloid Monolayers from Fungal Hydrophobin Proteins

  • Protocol
  • First Online:
Protein Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 996))

Abstract

The fungal hydrophobins are small proteins that are able to spontaneously self-assemble into amphipathic monolayers at hydrophobic:hydrophilic interfaces. These protein monolayers can reverse the wettability of a surface, making them suitable for increasing the biocompatibility of many hydrophobic nanomaterials. One subgroup of this family, the class I hydrophobins, forms monolayers that are composed of extremely robust amyloid-like fibrils, called rodlets. Here we describe protocols for the production and purification of recombinant hydrophobins and oxidative refolding to a biologically active, soluble, monomeric form. We describe methods to trigger self-assembly into the fibrillar rodlet state and techniques to characterize the physicochemical properties of the polymeric forms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Linder MB, Szilvay GR, Nakari-Setala T, Penttila ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896

    Article  PubMed  CAS  Google Scholar 

  2. Wösten HAB (2001) Hydrophobins: multipurpose proteins. Ann Rev Microbiol 55:625–646

    Article  Google Scholar 

  3. Wosten HAB, de Vocht ML (2000) Hydrophobins, the fungal coat unravelled. Biochim Biophys Acta Rev Biomembr 1469:79–86

    Article  CAS  Google Scholar 

  4. Sunde M, Kwan AH, Templeton MD, Beever RE, Mackay JP (2008) Structural analysis of hydrophobins. Micron 39:773–784

    Article  PubMed  CAS  Google Scholar 

  5. Wosten HA, de Vocht ML (2000) Hydrophobins, the fungal coat unravelled. Biochim Biophys Acta 1469:79–86

    Article  PubMed  CAS  Google Scholar 

  6. Hakanpaa J, Linder M, Popov A, Schmidt A, Rouvinen J, Linder MB, Szilvay GR, Nakari-Setala T, Penttila ME (2006) Hydrophobin HFBII in detail: ultrahigh-resolution structure at 0.75 A. Acta Crystallogr D Biol Crystallogr 62:356–367

    Article  PubMed  Google Scholar 

  7. Hakanpaa J, Paananen A, Askolin S, Nakari-Setala T, Parkkinen T, Penttila M, Linder MB, Rouvinen J (2004) Atomic resolution structure of the HFBII hydrophobin, a self-assembling amphiphile. J Biol Chem 279:534–539

    Article  PubMed  Google Scholar 

  8. Hakanpaa J, Szilvay GR, Kaljunen H, Maksimainen M, Linder M, Rouvinen J, Popov A, Schmidt A (2006) Two crystal structures of Trichoderma reesei hydrophobin HFBI–the structure of a protein amphiphile with and without detergent interaction. Protein Sci 15:2129–2140

    Article  PubMed  CAS  Google Scholar 

  9. Kwan AH, Winefield RD, Sunde M, Matthews JM, Haverkamp RG, Templeton MD, Mackay JP (2006) Structural basis for rodlet assembly in fungal hydrophobins. Proc Natl Acad Sci U S A 103:3621–3626

    Article  PubMed  CAS  Google Scholar 

  10. Wang X, Wang H, Huang Y, Zhao Z, Qin X, Wang Y, Miao Z, Chen Q, Qiao M (2010) Noncovalently functionalized multi-wall carbon nanotubes in aqueous solution using the hydrophobin HFBI and their electroanalytical application. Biosens Bioelectron 26:1104–1108

    Article  PubMed  CAS  Google Scholar 

  11. Zhao ZX, Qiao MQ, Yin F, Shao B, Wu BY, Wang YY, Wang XS, Qin X, Li S, Yu L, Chen Q (2007) Amperometric glucose biosensor based on self-assembly hydrophobin with high efficiency of enzyme utilization. Biosens Bioelectron 22:3021–3027

    Article  PubMed  CAS  Google Scholar 

  12. Zhao ZX, Wang HC, Qin X, Wang XS, Qiao MQ, Anzai JI, Chen Q (2009) Self-assembled film of hydrophobins on gold surfaces and its application to electrochemical biosensing. Colloids Surf B Biointerfaces 71(1):102–106

    Article  PubMed  CAS  Google Scholar 

  13. Kwan AH, Macindoe I, Vukasin PV, Morris VK, Kass I, Gupte R, Mark AE, Templeton MD, Mackay JP, Sunde M (2008) The Cys3-Cys4 loop of the hydrophobin EAS is not required for rodlet formation and surface activity. J Mol Biol 382(3):708–720

    Article  PubMed  CAS  Google Scholar 

  14. Catanzariti AM, Soboleva TA, Jans DA, Board PG, Baker RT (2004) An efficient system for high-level expression and easy purification of authentic recombinant proteins. Protein Sci 13:1331–1339

    Article  PubMed  CAS  Google Scholar 

  15. Schrodinger LLC (2010) The PyMOL molecular graphics system, Version 1.3r1.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Ann Kwan for development of the recombinant expression and oxidative refolding protocol and for her advice and assistance. This work was supported by funding from the National Health and Medical Research Council of Australia (CDA402831) and the Australian Research Council (LP0776672 and DP0879121).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Morris, V.K., Sunde, M. (2013). Formation of Amphipathic Amyloid Monolayers from Fungal Hydrophobin Proteins. In: Gerrard, J. (eds) Protein Nanotechnology. Methods in Molecular Biology, vol 996. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-354-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-354-1_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-353-4

  • Online ISBN: 978-1-62703-354-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics