Skip to main content

Scoring Microsatellite Loci

  • Protocol
  • First Online:
Microsatellites

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1006))

Abstract

Microsatellites have been utilized for decades for genotyping individuals in various types of research. Automated scoring of microsatellite loci has allowed for rapid interpretation of large datasets. Although the use of software produces an automated process to score or genotype samples, several sources of error have to be taken into account to produce accurate genotypes. A variety of problems (from extracting DNA to entering a genotype into a database) which can arise throughout this process might result in erroneous genotype assignment to one or more samples, potentially confounding the conclusions of your study. Correctly assigning a genotype to a sample requires knowledge of the chemistry you use to generate the data as well as the software you use to analyze these results. In this chapter we describe the critical and more common points that researchers experience when scoring microsatellite loci. More importantly we provide insight from an experienced perspective for these challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams RI, Brown KM, Hamilton MB (2004) The impact of microsatellite electromorph size homoplasy on multilocus population structure estimates in a tropical tree (Corythophora alta) and an anadromous fish (Morone saxatilis). Mol Ecol 13:2579–2588

    Article  PubMed  CAS  Google Scholar 

  2. Anderson SJ, Gould P, Freeland JR (2007) Repetitive flanking sequences (ReFS): novel molecular markers from microsatellite families. Mol Ecol Notes 7:374–376

    Article  CAS  Google Scholar 

  3. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  4. Benjamini Y, Yekutieli D (2005) Quantitative trait loci analysis using the false discovery rate. Genetics 171:783–790

    Article  PubMed  CAS  Google Scholar 

  5. Bhargava A, Fuentes FF (2010) Mutational dynamics of microsatellites. Mol Biotechnol 44:250–266

    Article  PubMed  CAS  Google Scholar 

  6. Bonin A, Bellemain E, Eidesen PB et al (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273

    Article  PubMed  CAS  Google Scholar 

  7. Brinkmann B, Klintschar M, Neuhuber F et al (1998) Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet 62:1408–1415

    Article  PubMed  CAS  Google Scholar 

  8. Brondani RPV, Grattapaglia D (2001) Cost-effective method to synthesize a fluorescent internal DNA standard for automated fragment sizing. Biotechniques 31:793–800

    PubMed  CAS  Google Scholar 

  9. Brownstein MJ, Carpten D, Smith JR (1996) Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques 20:1004–1010

    PubMed  CAS  Google Scholar 

  10. Bull L, Pabon-Pena C, Freimer N (1999) Compound microsatellite repeats: practical and theoretical features. Genome Res 9:830–838

    Article  PubMed  CAS  Google Scholar 

  11. Chakraborty R, DeAndrade M, Daiger SP et al (1992) Apparent heterozygote deficiencies observed in DNA typing data and their implications in forensic applications. Ann Hum Genet 56:45–57

    Article  PubMed  CAS  Google Scholar 

  12. Chambers GK, MacAvoy ES (2000) Microsatellites: consensus and controversy. Comp Biochem Physiol B Biochem Mol Biol 126:455–476

    Article  PubMed  CAS  Google Scholar 

  13. Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  PubMed  CAS  Google Scholar 

  14. Chen JW, Uboh CE, Soma LR et al (2010) Identification of racehorse and sample contamination by novel 24-plex STR system. Forensic Sci Int Genet 4:158–167

    Article  PubMed  CAS  Google Scholar 

  15. Cherel P, Glénisson J, Pires J (2011) Tetranucleotide microsatellites contribute to a highly discriminating parentage test panel in pig. Anim Genet 42:659–661

    Article  PubMed  CAS  Google Scholar 

  16. Christians JK, Watt CA (2009) Mononucleotide repeats represent an important source of polymorphic microsatellite markers in Aspergillus nidulans. Mol Ecol Resour 9:572–578

    Article  PubMed  Google Scholar 

  17. Cipriani G, Marrazzo MT, DiGaspero G et al (2008) A set of microsatellite markers with long core repeat optimized for grape (Vitis spp.) genotyping. BMC Plant Biol 8:127

    Article  PubMed  Google Scholar 

  18. Clarke LA, Rebelo CS, Goncalves J et al (2001) PCR amplification introduces errors into mononucleotide and dinucleotide repeat sequences. Mol Pathol 54:351–353

    Article  PubMed  CAS  Google Scholar 

  19. Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heredity 93:504–509

    Article  PubMed  CAS  Google Scholar 

  20. Delmotte F, Leterme N, Simon JC (2001) Microsatellite allele sizing: difference between automated capillary electrophoresis and manual technique. Biotechniques 31:810

    PubMed  CAS  Google Scholar 

  21. DeWoody JA, Nason JD, Hipkins VD (2006) Mitigating scoring errors in microsatellite data from wild populations. Mol Ecol Notes 6:951–957

    Article  CAS  Google Scholar 

  22. Dieringer D, Schlötterer C (2003) Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species. Genome Res 13:2242–2251

    Article  PubMed  CAS  Google Scholar 

  23. Ebert D, Peakall R (2009) Chloroplast simple sequence repeats (cpSSRs): technical resources and recommendations for expanding cpSSR discovery and applications to a wide array of plant species. Mol Ecol Resour 9:673–690

    Article  PubMed  CAS  Google Scholar 

  24. Edwards A, Civitello A, Hammond HA et al (1991) DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am J Hum Genet 49:746–756

    PubMed  CAS  Google Scholar 

  25. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  26. Fazekas AJ, Steeves R, Newmaster SG (2010) Improving sequencing quality from PCR products containing long mononucleotide repeats. Biotechniques 48:277–281

    Article  PubMed  CAS  Google Scholar 

  27. Ferreira AM, Westers H, Sousa S et al (2009) Mononucleotide precedes dinucleotide repeat instability during colorectal tumour development in Lynch syndrome patients. J Pathol 219:96–102

    Article  PubMed  CAS  Google Scholar 

  28. Flores-Rentería L, Whipple AV (2011) A new approach to improve the scoring of mononucleotide microsatellite loci. Am J Bot 98:e51–e53

    Article  PubMed  Google Scholar 

  29. Gagneux P, Boesch C, Woodruff DS (1997) Microsatellite scoring errors associated with noninvasive genotyping based on nuclear DNA amplified from shed hair. Mol Ecol 6:861–868

    Article  PubMed  CAS  Google Scholar 

  30. Garcia de Leon FJ, Canonne M, Quillet E et al (1998) The application of microsatellite markers to breeding programmes in the sea bass, Dicentrarchus labrax. Aquaculture 159:303–316

    Article  CAS  Google Scholar 

  31. Ginot F, Bordelais I, Nguyen S et al (1996) Correction of some genotyping errors in automated fluorescent microsatellite analysis by enzymatic removal of one base overhangs. Nucleic Acids Res 24:540–541

    Article  PubMed  CAS  Google Scholar 

  32. Guichoux E, Lagache L, Wagner S et al (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11:591–611

    Article  PubMed  CAS  Google Scholar 

  33. Hill CR, Butler JM, Vallone PM (2009) A 26-plex autosomal STR assay to aid human identity testing. J Forensic Sci 54:1008–1015

    Article  PubMed  CAS  Google Scholar 

  34. Hoffman JI, Amos W (2005) Microsatellite genotyping errors: detection approaches, common sources and consequences for paternal exclusion. Mol Ecol 14:599–612

    Article  PubMed  CAS  Google Scholar 

  35. Jakobsson M, Säll T, Lind-Halldén C et al (2007) Evolution of chloroplast mononucleotide microsatellites in Arabidopsis thaliana. Theor Appl Genet 114:223–235

    Article  PubMed  CAS  Google Scholar 

  36. Kelkar YD, Strubczewski N, Hile SE et al (2010) What is a microsatellite: a computational and experimental definition based upon repeat mutational behavior at A/T and GT/AC repeats. Genome Biol Evol 2:620–635

    Article  PubMed  Google Scholar 

  37. Kim TS, Booth J, Gauch H et al (2008) Simple sequence repeats in Neurospora crassa: distribution, polymorphism and evolutionary inference. BMC Genomics 9:31

    Article  PubMed  Google Scholar 

  38. Kirov G, Williams N, Sham P et al (2000) Pooled genotyping of microsatellite markers in parent-offspring trios. Genome Res 10:105–115

    PubMed  CAS  Google Scholar 

  39. Kwok S, Kellog DE, McKinney N et al (1990) Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus 1 model studies. Nucleic Acids Res 18:999–1005

    Article  PubMed  CAS  Google Scholar 

  40. Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221

    PubMed  CAS  Google Scholar 

  41. Li Y-C, Korol AB, Fahima T et al (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465

    Article  PubMed  CAS  Google Scholar 

  42. Marshall TC, Slate J, Kruuk LEB et al (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    Article  PubMed  CAS  Google Scholar 

  43. Meldgaard M, Morling N (1997) Detection and quantitative characterization of artificial extra peaks following polymerase chain reaction amplification of 14 short tandem repeat systems used in forensic investigations. Electrophoresis 18:1928–1935

    Article  PubMed  CAS  Google Scholar 

  44. Missiaggia A, Grattapaglia D (2006) Plant microsatellite genotyping with 4-color fluorescent detection using multiple-tailed primers. Genet Mol Res 5:72–78

    PubMed  CAS  Google Scholar 

  45. Nater A, Kopps AM, Krützen M (2009) New polymorphic tetranucleotide microsatellite improve scoring accuracy in the bottlenose dolphin Tursiops aduncus. Mol Ecol Resour 9:531–534

    Article  PubMed  CAS  Google Scholar 

  46. O’Reilly PT, Canino MF, Bailey KM et al (2000) Isolation of twenty low stutter di- and tetranucleotide microsatellites for population analyses of walleye pollock and other gadoids. J Fish Biol 56:1074–1086

    Article  Google Scholar 

  47. Olejniczak M, Krzyzosiak WJ (2006) Genotyping of simple sequence repeats factors implicated in shadow band generation revisited. Electrophoresis 27:3724–3734

    Article  PubMed  Google Scholar 

  48. Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  49. Pompanon F, Bonin A, Bellemain E et al (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6:847–859

    Article  PubMed  CAS  Google Scholar 

  50. Primmer CR, Ellegren H (1998) Patterns of molecular evolution in avian microsatellites. Mol Biol Evol 15:997–1008

    Article  PubMed  CAS  Google Scholar 

  51. Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16:142–147

    Article  PubMed  Google Scholar 

  52. Riday H, Krohn AL (2010) Genetic map-based location of the red clover (Trifolium pratense L.) gametophytic self-incompatibility locus. Theor Appl Genet 121:761–767

    Article  PubMed  CAS  Google Scholar 

  53. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  54. Schwengel DA, Jedlicka AE, Nanthakumar EJ et al (1994) Comparison of fluorescence-based semi-automated genotyping of multiple microsatellite loci with autoradiographic techniques. Genomics 22:46–54

    Article  PubMed  CAS  Google Scholar 

  55. Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629

    Article  PubMed  Google Scholar 

  56. Shinde D, Lai Y, Sun F et al (2003) Taq DNA polymerase slippage mutation rates measured by PCR and quasi-likelihood analysis: (CA⁄GT)n and (A⁄T)n microsatellites. Nucleic Acids Res 31:974–980

    Article  PubMed  CAS  Google Scholar 

  57. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100:9440–9445

    Article  PubMed  CAS  Google Scholar 

  58. Sun X, Liu Y, Lutterbaugh J et al (2006) Detection of mononucleotide repeat sequence alterations in a large background of normal DNA for screening high-frequency microsatellite instability cancers. Clin Cancer Res 12:454–459

    Article  PubMed  CAS  Google Scholar 

  59. Thibodeau SN, Bren G, Schaid D (1993) Microsatellite instability in cancer of the proximal colon. Science 260:816–819

    Article  PubMed  CAS  Google Scholar 

  60. Toonen RJ, Hughes S (2001) Increased throughput for fragment analysis on ABI Prism Automated Sequencer using a membrane comb and STRand software. Biotechniques 31:1320–1324

    PubMed  CAS  Google Scholar 

  61. Wattier R, Engel CR, Saumitou-Laprade P et al (1998) Short allele dominance as a source of heterozygote deficiency at microsatellite loci: experimental evidence at the dinucleotide locus Gv1CT in Gracilaria gracilis (Rhodophyta). Mol Ecol 7:1569–1573

    Article  CAS  Google Scholar 

  62. Weber JL, Wong C (1993) Mutation of human short tandem repeats. Hum Mol Genet 8:1123–1128

    Article  Google Scholar 

  63. Zhang D-X (2004) Lepidopteran microsatellite DNA: redundant but promising. Trends Ecol Evol 19:507–509

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Flores-Rentería, L., Krohn, A. (2013). Scoring Microsatellite Loci. In: Kantartzi, S. (eds) Microsatellites. Methods in Molecular Biology, vol 1006. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-389-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-389-3_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-388-6

  • Online ISBN: 978-1-62703-389-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics