Skip to main content

Quantitative Fluorescence Co-localization to Study Protein–Receptor Complexes

  • Protocol
  • First Online:
Protein-Ligand Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1008))

Abstract

Fluorescence microscopy can be used to assess quantitatively the interaction between a ligand and its receptor, between two macromolecules, or between a macromolecule and a particular intracellular compartment by co-localization analysis. In general, this analysis involves tagging potential interacting partners with distinct fluorophores—by direct labeling of a small ligand, by expression of fluorescent cDNA constructs, by immunofluorescence labeling, or by some combination of these methods. Pairwise comparison of the fluorescence intensity of the two fluorophores at each pixel in a two channel digital image of the sample reveals regions where both are present. With appropriate protocols, the image data can be interpreted to indicate where the potential interacting partners are co-localized. Keeping in mind the limited resolution of the light microscope, co-localization is often used to support the claim that two molecules are interacting.

All quantitative methods for evaluating co-localization begin with identifying the pixels where the intensities of both color channels are above background. Typically this involves two sequential image segmentation steps: the first to exclude pixels where neither channel is above background, and the second to set overlap thresholds that exclude pixels where only one color channel is present. Following segmentation, various quantitative measures can be computed to describe the remaining subset of pixels where the two color channels overlap. These metrics range from simple calculation of the fraction of pixels where overlap occurs to more sophisticated image correlation metrics. Additional constraints may be employed to distinguish true co-localization from random overlap. Finally, an image map showing only the co-localized pixels may be displayed as an additional image channel in order to visualize the spatial distribution of co-localized pixels. Several commercial and open source software solutions provide this type of co-localization analysis, making image segmentation and calculation of metrics relatively straightforward. As an example, we provide a protocol for the time-dependent co-localization of fluorescently tagged lipoproteins with LDL receptor (LDLR) and with the early endosome marker EEA1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manders EM, Stap J, Brakenhoff GJ, van Driel R, Aten JA (1992) Dynamics of three-dimensional replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy. J Cell Sci 103(Pt 3):857–862

    PubMed  CAS  Google Scholar 

  2. Manders EMM, Verbeek FJ, Aten JA (1993) Measurement of co-localization of objects in dual-colour confocal images. J Microsc 169:375–382

    Article  Google Scholar 

  3. Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S (2004) Automatic and quantitative measurement of protein–protein colocalization in live cells. Biophys J 86:3993–4003

    Article  PubMed  CAS  Google Scholar 

  4. van Steensel B, van Binnendijk EP, Hornsby CD, van der Voort HT, Krozowski ZS, de Kloet ER, van Driel R (1996) Partial colocalization of glucocorticoid and mineralocorticoid receptors in discrete compartments in nuclei of rat hippocampus neurons. J Cell Sci 109(Pt 4):787–792

    PubMed  Google Scholar 

  5. Li Q, Lau A, Morris TJ, Guo L, Fordyce CB, Stanley EF (2004) A syntaxin 1, Galpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization. J Neurosci 24:4070–4081

    Article  PubMed  CAS  Google Scholar 

  6. Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232

    Article  PubMed  CAS  Google Scholar 

  7. Comeau JW, Costantino S, Wiseman PW (2006) A guide to accurate fluorescence microscopy colocalization measurements. Biophys J 91:4611–4622

    Article  PubMed  CAS  Google Scholar 

  8. Adler J, Pagakis SN, Parmryd I (2008) Replicate-based noise corrected correlation for accurate measurements of colocalization. J Microsc 230:121–133

    Article  PubMed  CAS  Google Scholar 

  9. RamÍRez O, GarcÍA A, Rojas R, Couve A, HÄRtel S (2010) Confined displacement algorithm determines true and random colocalization in fluorescence microscopy. J Microsc 239:173–183.

    Google Scholar 

  10. Toomre D, Bewersdorf J (2010) A new wave of cellular imaging. Annu Rev Cell Dev Biol 26:285–314.

    Google Scholar 

  11. Zhao Z, Michaely P (2009) The role of calcium in lipoprotein release by the low-density lipoprotein receptor. Biochemistry 48:7313–7324

    Article  PubMed  CAS  Google Scholar 

  12. Image documentation for JaCoP can be found here: http://imagejdocu.tudor.lu/lib/exe/fetch.php?media=plugin:analysis:jacop_2.0:just_another_colocalization_plugin:jacop_ijconf2008.pdf Documentation and a link to the source code for Coloc 2, Colocalization Threshold and Colocalization Test can be found here: http://fiji.sc/wiki/Colocalization_Analysis

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pompey, S.N., Michaely, P., Luby-Phelps, K. (2013). Quantitative Fluorescence Co-localization to Study Protein–Receptor Complexes. In: Williams, M., Daviter, T. (eds) Protein-Ligand Interactions. Methods in Molecular Biology, vol 1008. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-398-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-398-5_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-397-8

  • Online ISBN: 978-1-62703-398-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics