Skip to main content

Lentiviral-Mediated Gene Transfer of siRNAs for the Treatment of Huntington’s Disease

  • Protocol
  • First Online:
Trinucleotide Repeat Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1010))

Abstract

This chapter describes the potential use of viral-mediated gene transfer in the central nervous system for the silencing of gene expression using RNA interference in the context of Huntington’s disease (HD). Protocols provided here describe the design of small interfering RNAs, their encoding in lentiviral vectors (LVs) and viral production, as well as procedures for their stereotaxic injection in the rodent brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang YL, Liu W, Wada E et al (2005) Clinico-pathological rescue of a model mouse of Huntington’s disease by siRNA. Neurosci Res 53:241–249

    Article  PubMed  CAS  Google Scholar 

  2. DiFiglia M, Sena-Esteves M, Chase K et al (2007) Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci USA 104:17204–17209

    Article  PubMed  CAS  Google Scholar 

  3. Samuel-Abraham S, Leonard JN (2010) Staying on message: design principles for controlling nonspecific responses to siRNA. FEBS J 277:4828–4836

    Article  PubMed  CAS  Google Scholar 

  4. Abbas-Terki T, Blanco-Bose W, Deglon N et al (2002) Lentiviral-mediated RNA interference. Hum Gene Ther 13:2197–2201

    Article  PubMed  CAS  Google Scholar 

  5. Deglon N, Tseng JL, Bensadoun JC et al (2000) Self-inactivating lentiviral vectors with enhanced transgene expression as potential gene transfer system in Parkinson’s disease. Hum Gene Ther 11:179–190

    Article  PubMed  CAS  Google Scholar 

  6. Naldini L, Blomer U, Gallay P et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267

    Article  PubMed  CAS  Google Scholar 

  7. Abordo-Adesida E, Follenzi A, Barcia C et al (2005) Stability of lentiviral vector-mediated transgene expression in the brain in the presence of systemic antivector immune responses. Hum Gene Ther 16:741–751

    Article  PubMed  CAS  Google Scholar 

  8. Grimm D, Streetz KL, Jopling CL et al (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441:537–541

    Article  PubMed  CAS  Google Scholar 

  9. Drouet V, Perrin V, Hassig R et al (2009) Sustained effects of nonallele-specific Huntingtin silencing. Ann Neurol 65:276–285

    Article  PubMed  CAS  Google Scholar 

  10. Boudreau RL, McBride JL, Martins I et al (2009) Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington’s disease mice. Mol Ther 17:1053–1063

    Article  PubMed  CAS  Google Scholar 

  11. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  PubMed  CAS  Google Scholar 

  12. Grimm D (2009) Small silencing RNAs: state-of-the-art. Adv Drug Deliv Rev 61:672–703

    Article  PubMed  CAS  Google Scholar 

  13. Snove O Jr, Rossi JJ (2006) Expressing short hairpin RNAs in vivo. Nat Methods 3:689–695

    Article  PubMed  CAS  Google Scholar 

  14. Walton SP, Wu M, Gredell JA et al (2010) Designing highly active siRNAs for therapeutic applications. FEBS J 277:4806–4813

    Article  PubMed  CAS  Google Scholar 

  15. Liu YP, Vink MA, Westerink JT et al (2010) Titers of lentiviral vectors encoding shRNAs and miRNAs are reduced by different mechanisms that require distinct repair strategies. RNA 16:1328–1339

    Article  PubMed  CAS  Google Scholar 

  16. Follenzi A, Ailles LE, Bakovic S et al (2000) Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 25:217–222

    Article  PubMed  CAS  Google Scholar 

  17. Zufferey R, Donello JE, Trono D et al (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73:2886–2892

    PubMed  CAS  Google Scholar 

  18. Paxinos G, Watson C (2004) The rat brain in stereotaxic coordinates (New York, Academic press)

    Google Scholar 

  19. Hottinger AF, Azzouz M, Deglon N et al (2000) Complete and long-term rescue of lesioned adult motoneurons by lentiviral-mediated expression of glial cell line-derived neurotrophic factor in the facial nucleus. J Neurosci 20:5587–5593

    PubMed  CAS  Google Scholar 

  20. Barde I, Salmon P, Trono D (2010) Production and titration of lentiviral vectors. Curr Protoc Neurosci Chapter 4, Unit 4 21

    Google Scholar 

  21. Kutner RH, Zhang XY, Reiser J (2009) Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc 4:495–505

    Article  PubMed  CAS  Google Scholar 

  22. Franklin B, Paxinos G (1996) The mouse brain in stereotaxic coordinates (New York)

    Google Scholar 

  23. Farson D, Witt R, McGuinness R et al (2001) A new-generation stable inducible packaging cell line for lentiviral vectors. Hum Gene Ther 12:981–997

    Article  PubMed  CAS  Google Scholar 

  24. Yang S, Delgado R, King SR et al (1999) Generation of retroviral vector for clinical studies using transient transfection. Hum Gene Ther 10:123–132

    Article  PubMed  CAS  Google Scholar 

  25. Boudreau RL, Monteys AM, Davidson BL (2008) Minimizing variables among hairpin-based RNAi vectors reveals the potency of shRNAs. RNA 14:1834–1844

    Article  PubMed  CAS  Google Scholar 

  26. Khan AA, Betel D, Miller ML et al (2009) Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat Biotechnol 27:549–555

    Article  PubMed  CAS  Google Scholar 

  27. Grimm D, Wang L, Lee JS et al (2010) Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult mouse liver. J Clin Invest 120:3106–3119

    Article  PubMed  CAS  Google Scholar 

  28. Chen G, Kronenberger P, Teugels E et al (2011) Influence of RT-qPCR primer position on EGFR interference efficacy in lung cancer cells. Biol Proced Online 13:1

    Article  CAS  Google Scholar 

  29. Shepard AR, Jacobson N, Clark AF (2005) Importance of quantitative PCR primer location for short interfering RNA efficacy determination. Anal Biochem 344:287–288

    Article  PubMed  CAS  Google Scholar 

  30. Hahn P, Schmidt C, Weber M et al (2004) RNA interference: PCR strategies for the quantification of stable degradation-fragments derived from siRNA-targeted mRNAs. Biomol Eng 21:113–117

    Article  PubMed  CAS  Google Scholar 

  31. Boudreau RL, Martins I, Davidson BL (2009) Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo. Mol Ther 17:169–175

    Article  PubMed  CAS  Google Scholar 

  32. Regulier E, Zala D, Aebischer P et al (2004) Lentiviral-mediated gene transfer to model triplet repeat disorders. Methods Mol Biol 277:199–213

    PubMed  CAS  Google Scholar 

  33. Rodrigues T, Carrondo MJ, Alves PM et al (2007) Purification of retroviral vectors for clinical application: biological implications and technological challenges. J Biotechnol 127:520–541

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer New York

About this protocol

Cite this protocol

Cambon, K., Déglon, N. (2013). Lentiviral-Mediated Gene Transfer of siRNAs for the Treatment of Huntington’s Disease. In: Kohwi, Y., McMurray, C. (eds) Trinucleotide Repeat Protocols. Methods in Molecular Biology, vol 1010. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-411-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-411-1_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-410-4

  • Online ISBN: 978-1-62703-411-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics