Skip to main content

Evaluation of MeDIP-Chip in the Context of Whole-Genome Bisulfite Sequencing (WGBS-Seq) in Arabidopsis

  • Protocol
  • First Online:
Tiling Arrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1067))

Abstract

Studies of DNA methylation in Arabidopsis have rapidly advanced from the analysis of a single reference accession to investigations of large populations. The goal of emerging population studies is to detect differentially methylated regions (DMRs) at the genome-wide scale, and to relate this variation to gene expression and phenotypic diversity.

Whole-genome bisulfite sequencing (WGBS-seq) has established itself as a gold standard in DNA methylation analysis due to its high accuracy and single cytosine measurement resolution. However, scaling up the use of this technology for large population studies is currently not only cost prohibitive but also poses nontrivial bioinformatic challenges. If the end-point of the study is to detect DMRs at the level of several hundred base pairs rather than at the level of single cytosines, low-resolution array-based methods, such as MeDIP-chip, may be entirely sufficient. However, the trade-off between measurement accuracy and experimental/analytical practicality needs to be weighted carefully. To help make such experimental choices, we conducted a side-by-side comparison between the popular dual-channel MeDIP-chip Nimblegen technology and Illumina WGBS-seq in two independent Arabidopsis lines.

Our analysis shows that MeDIP-chip performs reasonably well in detecting DNA methylation at probe-level resolution, yielding a genome-wide combined false-positive and false-negative rate of about 0.21. However, detection can be susceptible to strong signal distortions resulting from a combination of dye bias and the CG content of effectively unmethylated genomic regions. We show that these issues can be easily bypassed by taking appropriate data preparation steps and applying suitable analysis tools.

We conclude that MeDIP-chip is a reasonable alternative to WGBS-seq in emerging Arabidopsis population epigenetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  PubMed  CAS  Google Scholar 

  2. Laird PW (2010) Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 11:191–203

    Article  PubMed  CAS  Google Scholar 

  3. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  PubMed  CAS  Google Scholar 

  4. Zilberman D, Gehring M, Tran RK et al (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39:61–69

    Article  PubMed  CAS  Google Scholar 

  5. Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    Article  PubMed  CAS  Google Scholar 

  6. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD et al (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    Article  PubMed  CAS  Google Scholar 

  7. Schmitz RJ, Schultz MD, Lewsey MG et al (2011) Transgenerational epigenetic instability is a source of novel methylation variants. Science 334:369–373

    Article  PubMed  CAS  Google Scholar 

  8. Becker C, Hagmann J, Müller J et al (2011) Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480:245–249

    Article  PubMed  CAS  Google Scholar 

  9. Boyes J, Bird A (1992) Repression of genes by DNA methylation depends on CpG density and promoter strength: evidence for involvement of a methyl-CpG binding protein. EMBO J 11:327–333

    PubMed  CAS  Google Scholar 

  10. Lorincz MC, Schübeler D, Hutchinson SR, Dickerson DR, Groudine M (2002) DNA methylation density influences the stability of an epigenetic imprint and Dnmt3a/b-independent de novo methylation. Mol Cell Biol 22:7572–7580

    Article  PubMed  CAS  Google Scholar 

  11. Johannes F, Porcher E, Teixeira F, Saliba-Colombani V, Simon M, Agier N et al (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet 5:e1000530

    Article  PubMed  Google Scholar 

  12. Colomé-Tatché M, Cortijo S, Wardenaar R, Morgado L, Lahouze B, Sarazin A et al (2012) Features of the Arabidopsis recombination landscape resulting from the combined loss of sequence variation and DNA methylation. Proc Natl Acad Sci USA 109:16240–16245

    Article  PubMed  Google Scholar 

  13. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schübeler D (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862

    Article  PubMed  CAS  Google Scholar 

  14. Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, Kulesha E et al (2008) A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol 26:779–785

    Article  PubMed  CAS  Google Scholar 

  15. Cortijo S, Wardenaar R, Colomé-Tatché M, Johannes F, Roudier F, Colot V (2012) Genome-wide analysis of DNA methylation in Arabidopsis using MeDIP-chip. Methods Mol Biol 15:2930–2939

    Google Scholar 

  16. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 89:1827–1831

    Article  PubMed  CAS  Google Scholar 

  17. Clark SJ, Harrison J, Paul CL, Frommer M (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22:2990–2997

    Article  PubMed  CAS  Google Scholar 

  18. Lister R, Ecker JR (2009) Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res 19:959–966

    Article  PubMed  CAS  Google Scholar 

  19. Krueger F, Kreck B, Franke A, Andrews SR (2012) DNA methylome analysis using short bisulfite sequencing data. Nat Methods 9:145–151

    Article  PubMed  CAS  Google Scholar 

  20. Chen PY, Cokus SJ, Pellegrini M (2010) BS Seeker: precise mapping for bisulfite sequencing. BMC Bioinformatics 11:203

    Article  PubMed  CAS  Google Scholar 

  21. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  PubMed  CAS  Google Scholar 

  22. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, ISBN: 3-900051-07-0. http://www.R-project.org

  23. Dobbin KK, Kawasaki ES, Petersen DW, Simon RM (2005) Characterizing dye bias in microarray experiments. Bioinformatics 21:2430–2437

    Article  PubMed  CAS  Google Scholar 

  24. Dombkowski AA, Thibodeau BJ, Starcevic SL, Novak RF (2004) Gene-specific dye bias in microarray reference designs. FEBS Lett 560:120–124

    Article  PubMed  CAS  Google Scholar 

  25. Martin-Magniette ML, Mary-Huard T, Bérard C, Robin S (2008) ChIPmix: mixture model of regressions for two-color ChIP-chip analysis. Bioinformatics 24:i181–i186

    Article  PubMed  Google Scholar 

  26. Andrews S (2007) ChIPmonk: software for viewing and analysing ChIP-on-chip data. BMC Syst Biol 1(Suppl 1):P80

    Article  Google Scholar 

  27. Johannes F, Wardenaar R, Colomé-Tatché M, Mousson F, de Graaf P, Mokry M et al (2010) Comparing genome-wide chromatin profiles using ChIP-chip or ChIP-seq. Bioinformatics 26:1000–1006

    Article  PubMed  CAS  Google Scholar 

  28. Seifert M, Cortijo S, Colomé-Tatché M, Johannes F, Roudier F, Colot V (2012) MeDIP-HMM: genome-wide identification of distinct DNA methylation states from high-density tiling arrays. Bioinformatics 28:2930–2939

    Article  PubMed  CAS  Google Scholar 

  29. Li W, Meyer CA, Liu XS (2005) A hidden Markov model for analyzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences. Bioinformatics 21(Suppl 1):i274–i282

    Article  PubMed  CAS  Google Scholar 

  30. Royce TE, Rozowsky JS, Gerstein MB (2007) Assessing the need for sequence-based normalization in tiling microarray experiments. Bioinformatics 23:988–997

    Article  PubMed  CAS  Google Scholar 

  31. Gilbert D, Rechtsteiner A (2009) Comments on sequence normalization of tiling array expression. Bioinformatics 25:2171–2173

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Netherlands Organization for Scientific Research (NWO) (to F.J. and M.C.-T) and the Netherlands Bioinformatics Centre (NBIC) (to R.W.). Work in the Colot lab is supported in part by the European Union Network of Excellence EpigeneSys.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wardenaar, R., Liu, H., Colot, V., Colomé-Tatché, M., Johannes, F. (2013). Evaluation of MeDIP-Chip in the Context of Whole-Genome Bisulfite Sequencing (WGBS-Seq) in Arabidopsis . In: Lee, TL., Shui Luk, A. (eds) Tiling Arrays. Methods in Molecular Biology, vol 1067. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-607-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-607-8_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-606-1

  • Online ISBN: 978-1-62703-607-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics