Skip to main content

Optical Calcium Imaging Using DNA-Encoded Fluorescence Sensors in Transgenic Fruit Flies, Drosophila melanogaster

  • Protocol
  • First Online:
Fluorescent Protein-Based Biosensors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1071))

Abstract

The invention of protein-based fluorescent biosensors has paved the way to target specific cells with these probes and visualize intracellular processes not only in isolated cells or tissue cultures but also in transgenic animals. In particular, DNA-encoded fluorescence proteins sensitive to Ca2+ ions are often used to monitor changes in intracellular Ca2+ concentrations. This is of particular relevance in neuroscience since the dynamics of intracellular Ca2+ concentrations represents a faithful correlate for neuronal activity, and optical Ca2+ imaging is commonly used to monitor spatiotemporal activity across populations of neurons. In this respect Drosophila provides a favorable model organism due to the sophisticated genetic tools that facilitate the targeted expression of fluorescent Ca2+ sensor proteins. Here we describe how optical Ca2+ imaging of neuronal activity in the Drosophila brain can be carried out in vivo using two-photon microscopy. We exemplify this technique by describing how to monitor odor-evoked Ca2+ dynamics in the primary olfactory center of the Drosophila brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miyawaki A (2003) Fluorescence imaging of physiological activity in complex systems using GFP-based probes. Curr Opin Neurobiol 13:591–596

    Article  PubMed  CAS  Google Scholar 

  2. Looger LL, Griesbeck O (2012) Genetically encoded neural activity indicators. Curr Opin Neurobiol 22:18–23

    Article  PubMed  CAS  Google Scholar 

  3. Miyawaki A (2005) Innovations in the imaging of brain functions using fluorescent proteins. Neuron 48:189–199

    Article  PubMed  CAS  Google Scholar 

  4. Willoughby D, Cooper DM (2008) Live-cell imaging of cAMP dynamics. Nat Methods 5:29–36

    Article  PubMed  CAS  Google Scholar 

  5. Mutoh H, Perron A, Akemann W, Iwamoto Y, Knöpfel T (2011) Optogenetic monitoring of membrane potentials. Exp Physiol 96:13–18

    Article  PubMed  Google Scholar 

  6. Tian L, Akerboom J, Schreiter ER, Looger LL (2012) Neural activity imaging with genetically encoded calcium indicators. Prog Brain Res 196:79–94

    Article  PubMed  CAS  Google Scholar 

  7. Dreosti E, Lagnado L (2011) Optical reporters of synaptic activity in neural circuits. Exp Physiol 96:4–12

    Article  PubMed  Google Scholar 

  8. Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26

    Article  PubMed  CAS  Google Scholar 

  9. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887

    Article  PubMed  CAS  Google Scholar 

  10. Romoser VA, Hinkle PM, Persechini A (1997) Detection in living cells of Ca2+-dependent changes in the fluorescence emission of an indicator composed of two green fluorescent protein variants linked by a calmodulin-binding sequence. A new class of fluorescent indicators. J Biol Chem 272:13270–13274

    Article  PubMed  CAS  Google Scholar 

  11. Mank M, Griesbeck O (2008) Genetically encoded calcium indicators. Chem Rev 108:1550–1564

    Article  PubMed  CAS  Google Scholar 

  12. Riemensperger T, Pech U, Dipt S, Fiala A (2012) Optical calcium imaging in the nervous system of Drosophila melanogaster. Biochim Biophys Acta 1820:1169–1178

    Article  PubMed  CAS  Google Scholar 

  13. Bachmann A, Knust E (2008) The use of P-element transposons to generate transgenic flies. Methods Mol Biol 420:61–77

    Article  PubMed  CAS  Google Scholar 

  14. Venken KJ, Simpson JH, Bellen HJ (2011) Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72:202–230

    Article  PubMed  CAS  Google Scholar 

  15. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    PubMed  CAS  Google Scholar 

  16. Vosshall LB, Stocker RF (2007) Molecular architecture of smell and taste in Drosophila. Annu Rev Neurosci 30:505–533

    Article  PubMed  CAS  Google Scholar 

  17. Hallem EA, Carlson JR (2006) Coding of odors by a receptor repertoire. Cell 125:143–160

    Article  PubMed  CAS  Google Scholar 

  18. Fiala A, Spall T, Diegelmann S, Eisermann B, Sachse S, Devaud JM, Buchner E, Galizia CG (2002) Genetically expressed cameleon in Drosophila melanogaster is used to visualize olfactory information in projection neurons. Curr Biol 12:1877–1884

    Article  PubMed  CAS  Google Scholar 

  19. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  PubMed  CAS  Google Scholar 

  20. Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB (2004) Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43:703–714

    Article  PubMed  CAS  Google Scholar 

  21. Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, Bargmann CI, Jayaraman V, Svoboda K, Looger LL (2009) Imaging neural activity in worms, flies and mice with improved G-CaMP calcium indicators. Nat Methods 6:875–881

    Article  PubMed  CAS  Google Scholar 

  22. Estes PS, Roos J, van der Bliek A, Kelly RB, Krishnan KS, Ramaswami M (1996) Traffic of dynamin within individual Drosophila synaptic boutons relative to compartment-specific markers. J Neurosci 16:5443–5456

    PubMed  CAS  Google Scholar 

  23. Strutz A, Völler T, Riemensperger T, Fiala A, Sachse S (2012) Calcium imaging of neural activity in the olfactory system of Drosophila. In: Martin JR (ed) Genetically encoded functional indicators. Springer Neuromethods 72:43–70

    Google Scholar 

  24. Fiala A, Spall T (2003) In vivo calcium imaging of brain activity in Drosophila by transgenic cameleon expression. Sci STKE (174):PL6

    Google Scholar 

  25. Olsson SB, Kuebler LS, Veit D, Steck K, Schmidt A, Knaden M, Hansson BS (2011) A novel multicomponent stimulus device for use in olfactory experiments. J Neurosci Methods 195:1–9

    Article  PubMed  Google Scholar 

  26. Thévenaz P, Ruttimann UE, Unser M (1998) A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process 7:27–41

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (SPP1392, FI 821/2-1, and SFB 889/B4) and the German Federal Ministry for Education and Research via the Bernstein Center for Computational Neuroscience Göttingen B01, grant number 01GQ1005A.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dipt, S., Riemensperger, T., Fiala, A. (2014). Optical Calcium Imaging Using DNA-Encoded Fluorescence Sensors in Transgenic Fruit Flies, Drosophila melanogaster . In: Zhang, J., Ni, Q., Newman, R. (eds) Fluorescent Protein-Based Biosensors. Methods in Molecular Biology, vol 1071. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-622-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-622-1_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-621-4

  • Online ISBN: 978-1-62703-622-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics