Skip to main content

Imaging the Activity of Ras Superfamily GTPase Proteins in Small Subcellular Compartments in Neurons

  • Protocol
  • First Online:
Fluorescent Protein-Based Biosensors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1071))

Abstract

Resolving the spatiotemporal dynamics of intracellular signaling is important for understanding the molecular mechanisms of various cellular processes induced by extracellular signals. Two-photon fluorescence lifetime imaging microscopy (2pFLIM) in combination with a fluorescence resonance energy transfer (FRET)-based signaling sensors allows one to image signaling within small subcellular compartments, such as dendritic spines of neurons, with high sensitivity and spatiotemporal resolution. In this protocol, we describe the procedures and equipment required for imaging intracellular signaling activity, with a particular focus on signaling mediated by the Ras superfamily of small GTPase proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81(1):153–208

    PubMed  CAS  Google Scholar 

  2. Ye X, Carew TJ (2010) Small G protein signaling in neuronal plasticity and memory formation: the specific role of ras family proteins. Neuron 68(3):340–361

    Article  PubMed  CAS  Google Scholar 

  3. Miyawaki A (2003) Visualization of the spatial and temporal dynamics of intracellular signaling. Dev Cell 4(3):295–305

    Article  PubMed  CAS  Google Scholar 

  4. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 4th edn. Springer, New York, NY

    Book  Google Scholar 

  5. Mochizuki NYS, Kurokawa K, Ohba Y et al (2001) Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411(6841):1065–1068

    Article  PubMed  CAS  Google Scholar 

  6. Itoh RE, Kurokawa K, Ohba Y et al (2002) Activation of Rac and Cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol Cell Biol 22(18):6582–6591

    Article  PubMed  CAS  Google Scholar 

  7. Nakamura T, Aoki K, Matsuda M (2005) Monitoring spatio-temporal regulation of Ras and Rho GTPase with GFP-based FRET probes. Methods 37(2):146–153

    Article  PubMed  CAS  Google Scholar 

  8. Yasuda R, Harvey CD, Zhong H et al (2006) Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging. Nat Neurosci 9(2):283–291

    Article  PubMed  CAS  Google Scholar 

  9. Yasuda R (2006) Imaging spatiotemporal dynamics of neuronal signaling using fluorescence resonance energy transfer and fluorescence lifetime imaging microscopy. Curr Opin Neurobiol 16(5):551–561

    Article  PubMed  CAS  Google Scholar 

  10. Harvey CD, Yasuda R, Zhong H et al (2008) The spread of Ras activity triggered by activation of a single dendritic spine. Science 321(5885):136–140

    Article  PubMed  CAS  Google Scholar 

  11. Murakoshi H, Lee SJ, Yasuda R (2008) Highly sensitive and quantitative FRET-FLIM imaging in single dendritic spines using improved non-radiative YFP. Brain Cell Biol 36(1–4):31–42

    Article  PubMed  Google Scholar 

  12. Lee SJ, Escobedo-Lozoya Y, Szatmari EM et al (2009) Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458(7236):299–304

    Article  PubMed  CAS  Google Scholar 

  13. Murakoshi H, Wang H, Yasuda R (2011) Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature 472(7341):100–104

    Article  PubMed  CAS  Google Scholar 

  14. Pedelacq JD, Cabantous S, Tran T et al (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24(1):79–88

    Article  PubMed  CAS  Google Scholar 

  15. Cabantous S, Rogers Y, Terwilliger TC et al (2008) New molecular reporters for rapid protein folding assays. PLoS One 3(6):e2387

    Article  PubMed  Google Scholar 

  16. Shaner NC, Campbell RE, Steinbach PA et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572

    Article  PubMed  CAS  Google Scholar 

  17. Wennerberg K, Der CJ (2004) Rho-family GTPases: it’s not only Rac and Rho (and I like it). J Cell Sci 117(Pt 8):1301–1312

    Article  PubMed  CAS  Google Scholar 

  18. Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37(2):173–182

    Article  PubMed  CAS  Google Scholar 

  19. McAllister AK (2000) Biolistic transfection of neurons. Sci STKE 2000(51):pl1

    Article  PubMed  CAS  Google Scholar 

  20. Choy E, Chiu VK, Silletti J et al (1999) Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell 98(1):69–80

    Article  PubMed  CAS  Google Scholar 

  21. Heo WD, Meyer T (2003) Switch-of-function mutants based on morphology classification of Ras superfamily small GTPases. Cell 113(3):315–328

    Article  PubMed  CAS  Google Scholar 

  22. Beemiller P, Hoppe AD, Sawnson JA (2006) A phosphatidylinositol-3-kinase-dependent signal transition regulates ARF1 and ARF6 during Fcgamma receptor-mediated phagocytosis. PLoS Biol 4(6):e162

    Article  PubMed  Google Scholar 

  23. Gillingham AK, Munro S (2007) The small G proteins of the Arf family and their regulators. Annu Rev Cell Dev Biol 23:579–611

    Article  PubMed  CAS  Google Scholar 

  24. Hall B, McLean MA, Davis K et al (2008) A fluorescence resonance energy transfer activation sensor for Arf6. Anal Biochem 374(2):243–249

    Article  PubMed  CAS  Google Scholar 

  25. Ganesan S, Ameer-Beg SM, Ng TT et al (2006) A dark yellow fluorescent protein (YFP)-based resonance energy-accepting chromoprotein (REACh) for Förster resonance energy transfer with GFP. Proc Natl Acad Sci USA 103(11):4089–4094

    Article  PubMed  CAS  Google Scholar 

  26. Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118(Pt 5):843–846

    Article  PubMed  CAS  Google Scholar 

  27. Kiel C, Foglierini M, Kuemmerer N et al (2007) A genome-wide Ras-effector interaction network. J Mol Biol 370(5):1020–1032

    Article  PubMed  CAS  Google Scholar 

  28. Fukuda M (2003) Distinct Rab binding specificity of Rim1, Rim2, rabphilin, and Noc2. Identification of a critical determinant of Rab3A/Rab27A recognition by Rim2. J Biol Chem 278(17):15373–15380

    Article  PubMed  CAS  Google Scholar 

  29. Fukuda M, Kanno E, Ishibashi K et al (2008) Large scale screening for novel rab effectors reveals unexpected broad Rab binding specificity. Mol Cell Proteomics 7(6):1031–1042

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank E. Park, J. Nishiyama, and other members of the Yasuda lab for critical reading and discussion.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Oliveira, A.F., Yasuda, R. (2014). Imaging the Activity of Ras Superfamily GTPase Proteins in Small Subcellular Compartments in Neurons. In: Zhang, J., Ni, Q., Newman, R. (eds) Fluorescent Protein-Based Biosensors. Methods in Molecular Biology, vol 1071. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-622-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-622-1_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-621-4

  • Online ISBN: 978-1-62703-622-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics