Skip to main content

RNA Refolding Studied by Light-Coupled NMR Spectroscopy

  • Protocol
  • First Online:
RNA Folding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1086))

Abstract

Conformational transitions (refolding) between long-lived conformational states constitute the time-limiting step during the folding process of large RNAs. As the dynamics of these reactions dominate the regulatory and other functional behavior of RNA molecules, it is of importance to characterize them with high spatial and temporal resolution. Here, we describe a method for the investigation of RNA refolding reactions based on the photolytic generation of preselected conformations in a non-equilibrium state, followed by the observation of the folding trajectory with real-time NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kleckner IR, Foster MP (2011) An introduction to NMR-based approaches for measuring protein dynamics. Biochim Biophys Acta 1814:942–968

    Article  PubMed  CAS  Google Scholar 

  2. Thirumalai D, Woodson SA (2000) Maximizing RNA folding rates: a balancing act. RNA 6:790–794

    Article  PubMed  CAS  Google Scholar 

  3. Webb AE, Weeks KM (2001) A collapsed state functions to self-chaperone RNA folding into a native ribonucleoprotein complex. Nat Struct Biol 8:135–140

    Article  PubMed  CAS  Google Scholar 

  4. Porschke D, Hoffman GW, Senear A (1973) Double helical complex formed from a polynucleotide and a complementary monomer. Nat New Biol 242:45–46

    Article  PubMed  CAS  Google Scholar 

  5. Schwalbe H, Buck J, Furtig B et al (2007) Structures of RNA switches: insight into molecular recognition and tertiary structure. Angew Chem Int Ed Engl 46:1212–1219

    Article  PubMed  CAS  Google Scholar 

  6. Dethoff EA, Chugh J, Mustoe AM et al (2012) Functional complexity and regulation through RNA dynamics. Nature 482:322–330

    Article  PubMed  CAS  Google Scholar 

  7. Treiber DK, Rook MS, Zarrinkar PP et al (1998) Kinetic intermediates trapped by native interactions in RNA folding. Science 279:1943–1946

    Article  PubMed  CAS  Google Scholar 

  8. Zarrinkar PP, Williamson JR (1994) Kinetic intermediates in RNA folding. Science 265:918–924

    Article  PubMed  CAS  Google Scholar 

  9. Hobartner C, Micura R (2003) Bistable secondary structures of small RNAs and their structural probing by comparative imino proton NMR spectroscopy. J Mol Biol 325:421–431

    Article  PubMed  CAS  Google Scholar 

  10. Wenter P, Furtig B, Hainard A et al (2005) Kinetics of photoinduced RNA refolding by real-time NMR spectroscopy. Angew Chem Int Ed Engl 44:2600–2603

    Article  PubMed  CAS  Google Scholar 

  11. Wenter P, Furtig B, Hainard A et al (2006) A caged uridine for the selective preparation of an RNA fold and determination of its refolding kinetics by real-time NMR. Chembiochem 7:417–420

    Article  PubMed  CAS  Google Scholar 

  12. Kühn T, Schwalbe H (2000) Monitoring the kinetics of ion-dependent protein folding by time-resolved NMR spectroscopy at atomic resolution. J Am Chem Soc 122:6169–6174

    Article  Google Scholar 

  13. Wirmer J, Kühn T, Schwalbe H (2001) Millisecond time resolved photo-CIDNP NMR reveals a non-native folding intermediate on the ion-induced refolding pathway of bovine α-lactalbumin. Angew Chem 113:4378–4381

    Article  Google Scholar 

  14. Manoharan V, Furtig B, Jaschke A et al (2009) Metal-induced folding of Diels-Alderase ribozymes studied by static and time-resolved NMR spectroscopy. J Am Chem Soc 131:6261–6270

    Article  PubMed  CAS  Google Scholar 

  15. Micura R, Hobartner C (2003) On secondary structure rearrangements and equilibria of small RNAs. Chembiochem 4:984–990

    Article  PubMed  CAS  Google Scholar 

  16. Micura R, Pils W, Hobartner C et al (2001) Methylation of the nucleobases in RNA oligonucleotides mediates duplex-hairpin conversion. Nucleic Acids Res 29:3997–4005

    PubMed  CAS  Google Scholar 

  17. Reining A, Nozinovic S, Schlepckow K, Buhr F, Fürtig B, Schwalbe H (2013) Three–state mechanism couples ligand and temperature sensing in riboswitches. Nature 499: 355–359

    Article  PubMed  CAS  Google Scholar 

  18. Furtig B, Wenter P, Reymond L et al (2007) Conformational dynamics of bistable RNAs studied by time-resolved NMR spectroscopy. J Am Chem Soc 129:16222–16229

    Article  PubMed  Google Scholar 

  19. Gruber AR, Lorenz R, Bernhart SH et al (2008) The Vienna RNA websuite. Nucleic Acids Res 36:W70–W74

    Article  PubMed  CAS  Google Scholar 

  20. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  CAS  Google Scholar 

  21. Furtig B, Wenter P, Pitsch S et al (2010) Probing mechanism and transition state of RNA refolding. ACS Chem Biol 5:753–765

    Article  PubMed  CAS  Google Scholar 

  22. Kawashima E, Kamaike K (2004) Synthesis of stable-isotope (C-13 and N-15) labeled nucleosides and their applications. Mini Rev Org Chem 1:309–332

    Article  CAS  Google Scholar 

  23. Heckel A (2007) Nucleobase-caged phosphoramidites for oligonucleotide synthesis. Curr Protoc Nucleic Acid Chem Chapter 1, Unit 1 17

    Google Scholar 

  24. Mayer G, Heckel A (2006) Biologically active molecules with a “light switch”. Angew Chem Int Ed Engl 45:4900–4921

    Article  PubMed  CAS  Google Scholar 

  25. Kuprov I, Hore PJ (2004) Uniform illumination of optically dense NMR samples. J Magn Reson 171:171–175

    Article  PubMed  CAS  Google Scholar 

  26. Otting G, Wüthrich K (1989) Extended heteronuclear editing of 2D 1H NMR spectra of isotope-labeled proteins, using the X(w1, w2)-double-half-filter. J Magn Reson 85:586–594

    CAS  Google Scholar 

  27. Buck J, Furtig B, Noeske J et al (2007) Time-resolved NMR methods resolving ligand-induced RNA folding at atomic resolution. Proc Natl Acad Sci USA 104:15699–15704

    Article  PubMed  CAS  Google Scholar 

  28. Schanda P, Kupce E, Brutscher B (2005) SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J Biomol NMR 33:199–211

    Article  PubMed  CAS  Google Scholar 

  29. Furtig B, Richter C, Wohnert J et al (2003) NMR spectroscopy of RNA. Chembiochem 4:936–962

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work is supported by the state of Hesse (BMRZ), the DFG collaborative research center: Molecular principles of RNA-based regulation. H.S. is a member of the DFG center of excellence: macromolecular complexes.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schwalbe, H., Fürtig, B. (2014). RNA Refolding Studied by Light-Coupled NMR Spectroscopy. In: Waldsich, C. (eds) RNA Folding. Methods in Molecular Biology, vol 1086. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-667-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-667-2_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-666-5

  • Online ISBN: 978-1-62703-667-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics