Skip to main content

A Mouse Model of Staphylococcus Catheter-Associated Biofilm Infection

  • Protocol
  • First Online:
Staphylococcus Epidermidis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1106))

Abstract

Biofilms are adherent communities of bacteria contained within a complex matrix. Staphylococcal species are frequent etiological agents of device-associated biofilm infections in humans that are highly recalcitrant to antimicrobial therapy and alter host immune responses to facilitate bacterial persistence. Here we describe a mouse model of catheter-associated biofilm infection, which can be utilized to investigate the importance of various staphylococcal determinants on disease progression as well as the host immune response to staphylococcal biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  PubMed  CAS  Google Scholar 

  2. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 258: 135–138

    Article  Google Scholar 

  3. Lew DP, Waldvogel FA (1997) Osteomyelitis. N Engl J Med 326:999–1007

    Article  Google Scholar 

  4. NIH Concenus Conference (1995) Total hip replacement. JAMA 273:1950–1956

    Article  Google Scholar 

  5. Garvin KL (1995) Infection after total hip arthroplasty. J Bone Joint Surg Am 77:1576–1588

    PubMed  CAS  Google Scholar 

  6. Morscher E, Herzog R, Bapst R et al (1995) Management of infected hip arthroplasty. Orthop Int 3:343–351

    Google Scholar 

  7. Schoifet SD, Morrey BF (1990) Treatment of infection after total knee arthroplasty by debridement with retention of the components. J Bone Joint Surg Am 72:1383–1390

    PubMed  CAS  Google Scholar 

  8. Rasul AT, Tsukayama D, Gustilo RB (1991) Effect of time on onset and depth of infection on the outcome of total knee arthroplasty infections. Clin Orthop 273:98–103

    PubMed  Google Scholar 

  9. Burger RR, Basch T, Hopson CN (1991) Implant salvage in infected total knee arthroplasty. Clin Orthop 273:105–111

    PubMed  Google Scholar 

  10. Hartman MB, Fehring TK, Jordan L et al (1991) Periprosthetic knee sepsis: the role of irrigation and debridement. Clin Orthop 273:113–118

    PubMed  Google Scholar 

  11. Tsukayama DT, Gustilo RB (1991) Suppressive antibiotic therapy in chronic prosthetic joint infections. Orthopedics 14:841–844

    PubMed  CAS  Google Scholar 

  12. Wilson MG, Kelley K, Thornhill TS (1990) Infection as a complication of total knee-replacement arthroplasty. J Bone Joint Surg Am 72:878–883

    PubMed  CAS  Google Scholar 

  13. Brandt CM, Sistrunk WW, Duffy MC et al (1997) Staphylococcus aureus prosthetic infection treated with debridement and prosthesis retention. Clin Infect Dis 24:914–919

    Article  PubMed  CAS  Google Scholar 

  14. Fitzpatrick F, Humphreys H, O’Gara JP (2005) The genetics of staphylococcal biofilm formation—will a greater understanding of pathogenesis lead to better management of device-related infection? Clin Microbiol Infect 11:967–973

    Article  PubMed  CAS  Google Scholar 

  15. Otto M (2008) Staphylococcal biofilms. Curr Top Microbiol Immunol 322:207–228

    Article  PubMed  CAS  Google Scholar 

  16. Fey PD (2010) Modality of bacterial growth presents unique targets: how do we treat biofilm-mediated infections? Curr Opin Microbiol 13:610–615

    Article  PubMed  CAS  Google Scholar 

  17. Fitzsimmons K, Bamber AL, Smalley HB (2010) Infective endocarditis: changing aetiology of disease. Br J Biomed Sci 67:35–41

    PubMed  CAS  Google Scholar 

  18. Zuluaga AF, Galvis W, Saldarriaga JG et al (2006) Etiologic diagnosis of chronic osteomyelitis: a prospective study. Arch Intern Med 166:95–100

    Article  PubMed  Google Scholar 

  19. Donlan RM (2001) Biofilms and device-associated infections. Emerg Infect Dis 7: 277–281

    Article  PubMed  CAS  Google Scholar 

  20. Darouiche RO (2004) Treatment of infections associated with surgical implants. N Engl J Med 350:1422–1429

    Article  PubMed  CAS  Google Scholar 

  21. Rupp ME, Ulphani JS, Fey PD et al (1999) Characterization of the importance of polysaccharide intercellular adhesin/hemagglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model. Infect Immun 67:2627–2632

    PubMed  CAS  Google Scholar 

  22. Beenken KE, Spencer H, Griffin LM et al (2012) Impact of extracellular nuclease production on the biofilm phenotype of Staphylococcus aureus under in vitro and in vivo conditions. Infect Immun 80:1634–1638

    Article  PubMed  CAS  Google Scholar 

  23. Foster TJ (1996) Staphylococcus. In: Baron S (ed) Medical microbiology. University of Texas Medical Branch at Galveston, Galveston, TX

    Google Scholar 

  24. Herrmann M, Vaudaux PE, Pittet D et al (1988) Fibronectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. J Infect Dis 158:693–701

    Article  PubMed  CAS  Google Scholar 

  25. Rivera J, Vannakambadi G, Höök M et al (2007) Fibrinogen-binding proteins of Gram-positive bacteria. Thromb Haemost 98:503–511

    PubMed  CAS  Google Scholar 

  26. Dunne WM, Burd EM (1993) Fibronectin and proteolytic fragments of fibronectin interfere with the adhesion of Staphylococcus epidermidis to plastic. J Appl Bacteriol 74:411–416

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH National Institute of Allergy and Infectious Disease (NIAID) P01 AI083211 Project 4 to T.K.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Heim, C.E., Hanke, M.L., Kielian, T. (2014). A Mouse Model of Staphylococcus Catheter-Associated Biofilm Infection. In: Fey, P. (eds) Staphylococcus Epidermidis. Methods in Molecular Biology, vol 1106. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-736-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-736-5_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-735-8

  • Online ISBN: 978-1-62703-736-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics