Skip to main content

Enzyme Kinetics of Oxidative Metabolism: Cytochromes P450

  • Protocol
  • First Online:
Enzyme Kinetics in Drug Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1113))

Abstract

The cytochrome P450 enzymes (CYPs) are the most important enzymes in the oxidative metabolism of hydrophobic drugs and other foreign compounds (xenobiotics). The versatility of these enzymes results in some unusual kinetic properties, stemming from the simultaneous interaction of multiple substrates with the CYP active site. Often, the CYPs display kinetics that deviate from standard hyperbolic saturation or inhibition kinetics. Non-Michaelis–Menten or “atypical” saturation kinetics include sigmoidal, biphasic, and substrate inhibition kinetics (see Chapter 3). Interactions between substrates include competitive inhibition, noncompetitive inhibition, mixed inhibition, partial inhibition, activation, and activation followed by inhibition (see Chapter 4). Models and equations that can result in these kinetic profiles will be presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ortiz de Montellano PR (2005) Cytochrome P450: structure, mechanism, and biochemistry. Springer, New York

    Book  Google Scholar 

  2. August JT, Li AP, Anders MW, Murad F, Coyle JT (1997) Drug-drug interactions: scientific and regulatory perspectives, vol 43. Academic, New York

    Google Scholar 

  3. Li H, Poulos TL (2004) Crystallization of cytochromes P450 and substrate-enzyme interactions. Curr Top Med Chem 4(16):1789–1802

    Article  CAS  PubMed  Google Scholar 

  4. Luthra A, Denisov IG, Sligar SG (2011) Spectroscopic features of cytochrome P450 reaction intermediates. Arch Biochem Biophys 507(1):26–35. doi:10.1016/j.abb.2010.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dahal UP, Joswig-Jones C, Jones JP (2012) Comparative study of the affinity and metabolism of type I and type II binding quinoline carboxamide analogues by cytochrome P450 3A4. J Med Chem 55(1):280–290. doi:10.1021/jm201207h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Structure and chemistry of cytochrome P450. Chem Rev 105(6):2253–2277

    Article  CAS  PubMed  Google Scholar 

  7. Gorsky LD, Koop DR, Coon MJ (1984) On the stoichiometry of the oxidase and monooxygenase reactions catalyzed by liver microsomal cytochrome P-450. Products of oxygen reduction. J Biol Chem 259(11):6812–6817

    CAS  PubMed  Google Scholar 

  8. Coon MJ (2005) Cytochrome P450: nature’s most versatile biological catalyst. Annu Rev Pharmacol Toxicol 45:1–25

    Article  CAS  PubMed  Google Scholar 

  9. Atkins WM, Sligar SG (1987) Metabolic switching in cytochrome P-450cam: deuterium isotope effects on regiospecificity and the monooxygenase/oxidase ratio. J Am Chem Soc 109(12):3754–3760

    Article  CAS  Google Scholar 

  10. Kadkhodayan S, Coulter ED, Maryniak DM, Bryson TA, Dawson JH (1995) Uncoupling oxygen transfer and electron transfer in the oxygenation of camphor analogues by cytochrome P450-CAM. Direct observation of an intermolecular isotope effect for substrate C-H activation. J Biol Chem 270(47):28042–28048

    Article  CAS  PubMed  Google Scholar 

  11. Shaik S, Milko P, Schyman P, Usharani D, Chen H (2011) Trends in aromatic oxidation reactions catalyzed by cytochrome P450 enzymes: a valence bond modeling. J Chem Theory Comput 7(2):327–339

    Article  CAS  Google Scholar 

  12. Makris TM, Davydov R, Denisov IG, Hoffman BM, Sligar SG (2002) Mechanistic enzymology of oxygen activation by the cytochromes P450. Drug Metab Rev 34(4):691–708

    Article  CAS  PubMed  Google Scholar 

  13. Rittle J, Younker JM, Green MT (2010) Cytochrome P450: the active oxidant and its spectrum. Inorg Chem 49(8):3610–3617. doi:10.1021/ic902062d

    Article  CAS  PubMed  Google Scholar 

  14. Vaz AD, McGinnity DF, Coon MJ (1998) Epoxidation of olefins by cytochrome P450: evidence from site-specific mutagenesis for hydroperoxo-iron as an electrophilic oxidant. Proc Natl Acad Sci U S A 95(7):3555–3560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ortiz de Montellano PR, De Voss J (2005) Substrate oxidation by cytochrome P450 enzymes. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, function and genetics. Kluwer, New York, pp 183–245

    Chapter  Google Scholar 

  16. Jones JP, Korzekwa KR, Rettie AE, Trager WF, Shou M (1995) Isotopically sensitive branching and its effect on the observed intramolecular isotope effects in cytochrome-P-450 catalyzed-reactions—a new method for the estimation of intrinsic isotope effects stereospecific activation of the procarcinogen benzo[a]pyrene: a probe for the active sites of the cytochrome P450 superfamily. J Am Chem Soc 34(21):69567074–70786961

    Google Scholar 

  17. Wiebel FJ, Leutz JC, Diamond L, Gelboin HV (1971) Aryl hydrocarbon (benzo(a)pyrene) hydroxylase in microsomes from rat tissues: differential inhibition and stimulation by benzoflavones and organic solvents. Arch Biochem Biophys 144(1):78–86

    Article  CAS  PubMed  Google Scholar 

  18. Ueng YF, Kuwabara T, Chun YJ, Guengerich FP (1997) Cooperativity in oxidations catalyzed by cytochrome P450 3A4. Biochemistry 36(2):370–381. doi:10.1021/bi962359z

    Article  CAS  PubMed  Google Scholar 

  19. Shou M, Grogan J, Mancewicz JA, Krausz KW, Gonzalez FJ, Gelboin HV, Korzekwa KR (1994) Activation of CYP3A4: evidence for the simultaneous binding of two substrates in a cytochrome P450 active site. Biochemistry 33(21):6450–6455

    Article  CAS  PubMed  Google Scholar 

  20. DeVore NM, Scott EE (2012) Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone binding and access channel in human cytochrome P450 2A6 and 2A13 enzymes. J Biol Chem 287(32):26576–26585. doi:10.1074/jbc.M112.372813

    Article  CAS  PubMed  Google Scholar 

  21. Ekroos M, Sjögren T (2006) Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc Natl Acad Sci U S A 103(37):13682–13687. doi:10.1073/pnas.0603236103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kapelyukh Y, Paine MJI, Maréchal J-D, Sutcliffe MJ, Wolf CR, Roberts GCK (2008) Multiple substrate binding by cytochrome P450 3A4: estimation of the number of bound substrate molecules. Drug Metab Dispos 36(10):2136–2144. doi:10.1124/dmd.108.021733

    Article  CAS  PubMed  Google Scholar 

  23. Schoch GA, Yano JK, Sansen S, Dansette PM, Stout CD, Johnson EF (2008) Determinants of cytochrome P450 2C8 substrate binding: structures of complexes with montelukast, troglitazone, felodipine, and 9-cis-retinoic acid. J Biol Chem 283(25):17227–17237. doi:10.1074/jbc.M802180200

    Article  CAS  PubMed  Google Scholar 

  24. Shah MB, Wilderman PR, Pascual J, Zhang Q, Stout CD, Halpert JR (2012) Conformational adaptation of human cytochrome P450 2B6 and rabbit cytochrome P450 2B4 revealed upon binding multiple Amlodipine molecules. Biochemistry 51(37):7225–7238. doi:10.1021/bi300894z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cameron MD, Wen B, Allen KE, Roberts AG, Schuman JT, Campbell AP, Kunze KL, Nelson SD (2005) Cooperative binding of midazolam with testosterone and alpha-naphthoflavone within the CYP3A4 active site: a NMR T1 paramagnetic relaxation study. Biochemistry 44(43):14143–14151

    Article  CAS  PubMed  Google Scholar 

  26. Domanski TL, Halpert JR (2001) Analysis of mammalian cytochrome P450 structure and function by site-directed mutagenesis. Curr Drug Metab 2(2):117–137

    Article  CAS  PubMed  Google Scholar 

  27. Ueng YF, Shimada T, Yamazaki H, Guengerich FP (1995) Oxidation of aflatoxin B1 by bacterial recombinant human cytochrome P450 enzymes. Chem Res Toxicol 8(2):218–225

    Article  CAS  PubMed  Google Scholar 

  28. Nelson SD, Trager WF (2003) The use of deuterium isotope effects to probe the active site properties, mechanism of cytochrome P450-catalyzed reactions, and mechanisms of metabolically dependent toxicity. Drug Metab Dispos 31(12):1481–1498

    Article  CAS  PubMed  Google Scholar 

  29. Korzekwa KR, Gillette JR, Trager WF (1995) Isotope effect studies on the cytochrome P450 enzymes. Drug Metab Rev 27(1–2):45–59. doi:10.3109/03602539509029814

    Article  CAS  PubMed  Google Scholar 

  30. Segel IH (1975) Enzyme kinetics. Wiley, New York

    Google Scholar 

  31. Kenworthy KE, Clarke SE, Andrews J, Houston JB (2001) Multisite kinetic models for CYP3A4: simultaneous activation and inhibition of diazepam and testosterone metabolism. Drug Metab Dispos 29(12):1644–1651

    CAS  PubMed  Google Scholar 

  32. Shou M, Dai R, Cui D, Korzekwa KR, Baillie TA, Rushmore TH (2001) A kinetic model for the metabolic interaction of two substrates at the active site of cytochrome P450 3A4. J Biol Chem 276(3):2256–2262. doi:10.1074/jbc.M008799200

    Article  CAS  PubMed  Google Scholar 

  33. Korzekwa KR, Krishnamachary N, Shou M, Ogai A, Parise RA, Rettie AE, Gonzalez FJ, Tracy TS (1998) Evaluation of atypical cytochrome P450 kinetics with two-substrate models: evidence that multiple substrates can simultaneously bind to cytochrome P450 active sites. Biochemistry 37(12):4137–4147. doi:10.1021/bi9715627

    Article  CAS  PubMed  Google Scholar 

  34. Atkins WM (2005) Non-Michaelis-Menten kinetics in cytochrome P450-catalyzed reactions. Annu Rev Pharmacol Toxicol 45:291–310. doi:10.1146/annurev.pharmtox.45.120403.100004

    Article  CAS  PubMed  Google Scholar 

  35. Peng C-C, Pearson JT, Rock DA, Joswig-Jones CA, Jones JP (2010) The effects of type II binding on metabolic stability and binding affinity in cytochrome P450 CYP3A4. Arch Biochem Biophys 497(1–2):68–81. doi:10.1016/j.abb.2010.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McMasters DR, Torres RA, Crathern SJ, Dooney DL, Nachbar RB, Sheridan RP, Korzekwa KR (2007) Inhibition of recombinant cytochrome P450 isoforms 2D6 and 2C9 by diverse drug-like molecules. J Med Chem 50(14):3205–3213. doi:10.1021/jm0700060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stresser DM, Blanchard AP, Turner SD, Erve JC, Dandeneau AA, Miller VP, Crespi CL (2000) Substrate-dependent modulation of CYP3A4 catalytic activity: analysis of 27 test compounds with four fluorometric substrates. Drug Metab Dispos 28(12):1440–1448

    CAS  PubMed  Google Scholar 

  38. Galetin A, Ito K, Hallifax D, Houston JB (2005) CYP3A4 substrate selection and substitution in the prediction of potential drug-drug interactions. J Pharmacol Exp Ther 314(1):180–190

    Article  CAS  PubMed  Google Scholar 

  39. Walsky RL, Obach RS (2004) Validated assays for human cytochrome P450 activities. Drug Metab Dispos 32(6):646–660

    Article  Google Scholar 

  40. Akaike T (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  41. Lu P, Lin Y, Rodrigues AD, Rushmore TH, Baillie TA, Shou M (2001) Testosterone, 7-benzyloxyquinoline, and 7-benzyloxy-4-trifluoromethyl-coumarin bind to different domains within the active site of cytochrome P450 3A4. Drug Metab Dispos 29(11):1473–1479

    CAS  PubMed  Google Scholar 

  42. Denisov IG, Grinkova YV, McLean MA, Sligar SG (2007) The one-electron autoxidation of human cytochrome P450 3A4. J Biol Chem 282(37):26865–26873. doi:10.1074/jbc.M704747200

    Article  CAS  PubMed  Google Scholar 

  43. Davydov DR, Halpert JR (2008) Allosteric P450 mechanisms: multiple binding sites, multiple conformers or both? Expert Opin Drug Metab Toxicol 4(12):1523–1535. doi:10.1517/17425250802500028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Korzekwa, K. (2014). Enzyme Kinetics of Oxidative Metabolism: Cytochromes P450. In: Nagar, S., Argikar, U., Tweedie, D. (eds) Enzyme Kinetics in Drug Metabolism. Methods in Molecular Biology, vol 1113. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-758-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-758-7_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-757-0

  • Online ISBN: 978-1-62703-758-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics