Skip to main content

Analysis of Electrophysiological Properties and Responses of Neutrophils

  • Protocol
  • First Online:
Neutrophil Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1124))

Abstract

The past decade has seen increasing use of the patch-clamp technique on neutrophils and eosinophils. The main goal of these electrophysiological studies has been to elucidate the mechanisms underlying the phagocyte respiratory burst. NADPH oxidase activity, which defines the respiratory burst in granulocytes, is electrogenic because electrons from NADPH are transported across the cell membrane, where they reduce oxygen to form superoxide anion (O2 ). This passage of electrons comprises an electrical current that would rapidly depolarize the membrane if the charge movement were not balanced by proton efflux. The patch-clamp technique enables simultaneous recording of NADPH oxidase-generated electron current and H+ flux through the closely related H+ channel. Increasing evidence suggests that other ion channels may play crucial roles in degranulation, phagocytosis, and chemotaxis, highlighting the importance of electrophysiological studies to advance knowledge of granulocyte function. Several configurations of the patch-clamp technique exist. Each has advantages and limitations that are discussed here. Meaningful measurements of ion channels cannot be achieved without an understanding of their fundamental properties. We describe the types of measurements that are necessary to characterize a particular ion channel.

AA arachidonic acid, DPI diphenylene iodonium, g H proton conductance, O 2 superoxide anion, pH i intracellular pH, pH o extracellular pH, PKC protein kinase C, PMA phorbol myristate acetate, TEA + tetraethylammonium ion, TMA + tetramethylammonium, ATP adenosine triphosphate, GTPγs guanosine triphosphate γs, V rev reversal potential, V hold holding potential, V threshold channel opening potential, g H proton conductance, τ act time constant of activation, P open open probability, I hold holding current, I e electron current, E H equilibrium potential for protons, γ single channel conductance

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hodgkin AL, Huxley AF, Katz B (1952) Measurement of current–voltage relations in the membrane of the giant axon of Loligo. J Physiol 116:424–448

    CAS  PubMed  Google Scholar 

  2. Hamill OP, Marty A, Neher E et al (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  CAS  PubMed  Google Scholar 

  3. von Tscharner V, Prod’hom B, Baggiolini M et al (1986) Ion channels in human neutrophils activated by a rise in free cytosolic calcium concentration. Nature 324:369–372

    Article  Google Scholar 

  4. DeCoursey TE, Cherny VV (1993) Potential, pH, and arachidonate gate hydrogen ion currents in human neutrophils. Biophys J 65:1590–1598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Schrenzel J, Serrander L, Bánfi B et al (1998) Electron currents generated by the human phagocyte NADPH oxidase. Nature 392:734–737

    Article  CAS  PubMed  Google Scholar 

  6. Gordienko DV, Tare M, Parveen S et al (1996) Voltage-activated proton current in eosinophils from human blood. J Physiol 496:299–316

    CAS  PubMed  Google Scholar 

  7. Stoddard JS, Steinbach JH, Simchowitz L (1993) Whole cell Cl currents in human neutrophils induced by cell swelling. Am J Physiol 265:C156–C165

    CAS  PubMed  Google Scholar 

  8. Krause KH, Demaurex N, Jaconi M et al (1993) Ion channels and receptor-mediated Ca2+ influx in neutrophil granulocytes. Blood Cells 19:165–173, discussion 173-165

    CAS  PubMed  Google Scholar 

  9. Babior BM (1999) NADPH oxidase: an update. Blood 93:1464–1476

    CAS  PubMed  Google Scholar 

  10. DeCoursey TE, Cherny VV, Zhou W et al (2000) Simultaneous activation of NADPH oxidase-related proton and electron currents in human neutrophils. Proc Natl Acad Sci U S A 97:6885–6889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Petheö GL, Maturana A, Spät A et al (2003) Interactions between electron and proton currents in excised patches from human eosinophils. J Gen Physiol 122:713–726

    Article  PubMed Central  PubMed  Google Scholar 

  12. Morgan D, Cherny VV, Murphy R et al (2005) The pH dependence of NADPH oxidase in human eosinophils. J Physiol 569:419–431

    Article  CAS  PubMed  Google Scholar 

  13. Morgan D, Cherny VV, Murphy R et al (2003) Temperature dependence of NADPH oxidase in human eosinophils. J Physiol 550:447–458

    Article  CAS  PubMed  Google Scholar 

  14. Petheő GL, Demaurex N (2005) Voltage- and NADPH-dependence of electron currents generated by the phagocytic NADPH oxidase. Biochem J 388:485–491

    Article  PubMed  Google Scholar 

  15. DeCoursey TE (2003) Interactions between NADPH oxidase and voltage-gated proton channels: why electron transport depends on proton transport. FEBS Lett 555:57–61

    Article  CAS  PubMed  Google Scholar 

  16. Moreland JG, Davis AP, Bailey G et al (2006) Anion channels, including ClC-3, are required for normal neutrophil oxidative function, phagocytosis, and transendothelial migration. J Biol Chem 281:12277–12288

    Article  CAS  PubMed  Google Scholar 

  17. Menegazzi R, Busetto S, Dri P et al (1996) Chloride ion efflux regulates adherence, spreading, and respiratory burst of neutrophils stimulated by tumor necrosis factor-α (TNF) on biologic surfaces. J Cell Biol 135:511–522

    Article  CAS  PubMed  Google Scholar 

  18. Matsuda JJ, Filali MS, Moreland JG et al (2010) Activation of swelling-activated chloride current by tumor necrosis factor-alpha requires ClC-3-dependent endosomal reactive oxygen production. J Biol Chem 285:22864–22873

    Article  CAS  PubMed  Google Scholar 

  19. Moreland JG, Davis AP, Matsuda JJ et al (2007) Endotoxin priming of neutrophils requires NADPH oxidase-generated oxidants and is regulated by the anion transporter ClC-3. J Biol Chem 282:33958–33967

    Article  CAS  PubMed  Google Scholar 

  20. Volk AP, Heise CK, Hougen JL et al (2008) ClC-3 and IClswell are required for normal neutrophil chemotaxis and shape change. J Biol Chem 283:34315–34326

    Article  CAS  PubMed  Google Scholar 

  21. Painter RG, Bonvillain RW, Valentine VG et al (2008) The role of chloride anion and CFTR in killing of Pseudomonas aeruginosa by normal and CF neutrophils. J Leukoc Biol 83:1345–1353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Cherny VV, Henderson LM, DeCoursey TE (1997) Proton and chloride currents in Chinese hamster ovary cells. Membr Cell Biol 11:337–347

    CAS  PubMed  Google Scholar 

  23. Demaurex N, Grinstein S, Jaconi M et al (1993) Proton currents in human granulocytes: regulation by membrane potential and intracellular pH. J Physiol 466:329–344

    CAS  PubMed  Google Scholar 

  24. DeCoursey TE, Cherny VV (1994) Voltage-activated hydrogen ion currents. J Membr Biol 141:203–223

    Article  CAS  PubMed  Google Scholar 

  25. DeCoursey TE, Morgan D, Cherny VV (2003) The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels. Nature 422:531–534

    Article  CAS  PubMed  Google Scholar 

  26. Musset B, Cherny VV, Morgan D et al (2008) Detailed comparison of expressed and native voltage-gated proton channel currents. J Physiol 586:2477–2486

    Article  CAS  PubMed  Google Scholar 

  27. DeCoursey TE, Cherny VV (1996) Effects of buffer concentration on voltage-gated H+ currents: does diffusion limit the conductance? Biophys J 71:182–193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Schrenzel J, Lew DP, Krause KH (1996) Proton currents in human eosinophils. Am J Physiol 271:C1861–C1871

    CAS  PubMed  Google Scholar 

  29. Cherny VV, DeCoursey TE (1999) pH-dependent inhibition of voltage-gated H+ currents in rat alveolar epithelial cells by Zn2+ and other divalent cations. J Gen Physiol 114:819–838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Femling JK, Cherny VV, Morgan D et al (2006) The antibacterial activity of human neutrophils and eosinophils requires proton channels but not BK channels. J Gen Physiol 127:659–672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Tare M, Prestwich SA, Gordienko DV et al (1998) Inwardly rectifying whole cell potassium current in human blood eosinophils. J Physiol 506:303–318

    Article  CAS  PubMed  Google Scholar 

  32. Grinstein S, Romanek R, Rotstein OD (1994) Method for manipulation of cytosolic pH in cells clamped in the whole cell or perforated-patch configurations. Am J Physiol 267:C1152–C1159

    CAS  PubMed  Google Scholar 

  33. DeCoursey TE, Cherny VV (1998) Temperature dependence of voltage-gated H+ currents in human neutrophils, rat alveolar epithelial cells, and mammalian phagocytes. J Gen Physiol 112:503–522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kuno M, Ando H, Morihata H et al (2009) Temperature dependence of proton permeation through a voltage-gated proton channel. J Gen Physiol 134:191–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Chabala LD, Sheridan RE, Hodge DC et al (1985) A microscope stage temperature controller for the study of whole-cell or single-channel currents. Pflugers Arch 404:374–377

    Article  CAS  PubMed  Google Scholar 

  36. Rae JL, Levis RA (1984) Patch voltage clamp of lens epithelial cells: theory and practice. Mol Physiol 6:115–162

    CAS  Google Scholar 

  37. Cherny VV, Murphy R, Sokolov V et al (2003) Properties of single voltage-gated proton channels in human eosinophils estimated by noise analysis and by direct measurement. J Gen Physiol 121:615–628

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Fenwick EM, Marty A, Neher E (1982) A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J Physiol 331:577–597

    CAS  PubMed  Google Scholar 

  39. Lindau M, Fernandez JM (1986) IgE-mediated degranulation of mast cells does not require opening of ion channels. Nature 319:150–153

    Article  CAS  PubMed  Google Scholar 

  40. Rae J, Cooper K, Gates P et al (1991) Low access resistance perforated patch recordings using amphotericin B. J Neurosci Methods 37:15–26

    Article  CAS  PubMed  Google Scholar 

  41. Horn R, Marty A (1988) Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol 92:145–159

    Article  CAS  PubMed  Google Scholar 

  42. Fan JS, Palade P (1998) Perforated patch recording with β-escin. Pflugers Arch 436:1021–1023

    Article  CAS  PubMed  Google Scholar 

  43. Falke LC, Gillis KD, Pressel DM et al (1989) ‘Perforated patch recording’ allows long-term monitoring of metabolite-induced electrical activity and voltage-dependent Ca2+ currents in pancreatic islet B cells. FEBS Lett 251:167–172

    Article  CAS  PubMed  Google Scholar 

  44. Chung I, Schlichter LC (1993) Criteria for perforated-patch recordings: ion currents versus dye permeation in human T lymphocytes. Pflugers Arch 424:511–515

    Article  CAS  PubMed  Google Scholar 

  45. Strauss U, Herbrik M, Mix E et al (2001) Whole-cell patch-clamp: true perforated or spontaneous conventional recordings? Pflugers Arch 442:634–638

    Article  CAS  PubMed  Google Scholar 

  46. Bánfi B, Schrenzel J, Nüsse O et al (1999) A novel H+ conductance in eosinophils: unique characteristics and absence in chronic granulomatous disease. J Exp Med 190:183–194

    Article  PubMed Central  PubMed  Google Scholar 

  47. Robertson AK, Cross AR, Jones OTG et al (1990) The use of diphenylene iodonium, an inhibitor of NADPH oxidase, to investigate the antimicrobial action of human monocyte derived macrophages. J Immunol Methods 133:175–179

    Article  CAS  PubMed  Google Scholar 

  48. Barry PH (2006) The reliability of relative anion-cation permeabilities deduced from reversal (dilution) potential measurements in ion channel studies. Cell Biochem Biophys 46:143–154

    Article  CAS  PubMed  Google Scholar 

  49. Musset B, Smith SME, Rajan S et al (2011) Aspartate 112 is the selectivity filter of the human voltage-gated proton channel. Nature 480:273–277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. DeCoursey TE, Cherny VV (1994) Na+-H+ antiport detected through hydrogen ion currents in rat alveolar epithelial cells and human neutrophils. J Gen Physiol 103:755–785

    Article  CAS  PubMed  Google Scholar 

  51. Hodgkin AL, Huxley AF (1952) The components of membrane conductance in the giant axon of Loligo. J Physiol 116:473–496

    CAS  PubMed  Google Scholar 

  52. Byerly L, Meech R, Moody W Jr (1984) Rapidly activating hydrogen ion currents in perfused neurons of the snail, Lymnaea stagnalis. J Physiol 351:199–216

    CAS  PubMed  Google Scholar 

  53. DeCoursey TE (1991) Hydrogen ion currents in rat alveolar epithelial cells. Biophys J 60:1243–1253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Humez S, Fournier F, Guilbault P (1995) A voltage-dependent and pH-sensitive proton current in Rana esculenta oocytes. J Membr Biol 147:207–215

    Article  CAS  PubMed  Google Scholar 

  55. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  56. Neher E, Stevens CF (1977) Conductance fluctuations and ionic pores in membranes. Annu Rev Biophys Bioeng 6:345–381

    Article  CAS  PubMed  Google Scholar 

  57. Demaurex N, Monod A, Lew DP et al (1994) Characterization of receptor-mediated and store-regulated Ca2+ influx in human neutrophils. Biochem J 297:595–601

    CAS  PubMed  Google Scholar 

  58. Zweifach A, Lewis RS (1993) Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci U S A 90:6295–6299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Cross AR, Higson FK, Jones OT et al (1982) The enzymic reduction and kinetics of oxidation of cytochrome b -245 of neutrophils. Biochem J 204:479–485

    CAS  PubMed  Google Scholar 

  60. Koshkin V, Lotan O, Pick E (1996) The cytosolic component p47phox is not a sine qua non participant in the activation of NADPH oxidase but is required for optimal superoxide production. J Biol Chem 271:30326–30329

    Article  CAS  PubMed  Google Scholar 

  61. Murphy R, DeCoursey TE (2006) Charge compensation during the phagocyte respiratory burst. Biochim Biophys Acta 1757:996–1011

    Article  CAS  PubMed  Google Scholar 

  62. Henderson LM, Chappell JB, Jones OTG (1987) The superoxide-generating NADPH oxidase of human neutrophils is electrogenic and associated with an H+ channel. Biochem J 246:325–329

    CAS  PubMed  Google Scholar 

  63. Bankers-Fulbright JL, Gleich GJ, Kephart GM et al (2003) Regulation of eosinophil membrane depolarization during NADPH oxidase activation. J Cell Sci 116:3221–3226

    Article  CAS  PubMed  Google Scholar 

  64. Geiszt M, Kapus A, Nemet K et al (1997) Regulation of capacitative Ca2+ influx in human neutrophil granulocytes. Alterations in chronic granulomatous disease. J Biol Chem 272:26471–26478

    Article  CAS  PubMed  Google Scholar 

  65. Jankowski A, Grinstein S (1999) A noninvasive fluorimetric procedure for measurement of membrane potential. Quantification of the NADPH oxidase-induced depolarization in activated neutrophils. J Biol Chem 274:26098–26104

    Article  CAS  PubMed  Google Scholar 

  66. Rada BK, Geiszt M, Káldi K et al (2004) Dual role of phagocytic NADPH oxidase in bacterial killing. Blood 104:2947–2953

    Article  CAS  PubMed  Google Scholar 

  67. Demaurex N, Petheõ GL (2005) Electron and proton transport by NADPH oxidases. Philos Trans R Soc Lond B Biol Sci 360:2315–2325

    Article  CAS  PubMed  Google Scholar 

  68. DeCoursey TE (2004) During the respiratory burst, do phagocytes need proton channels or potassium channels, or both? Sci STKE 2004:pe21

    PubMed  Google Scholar 

  69. DeCoursey TE (2013) Voltage gated proton channels: molecular biology, physiology and pathophysiology of the HV family. Physiol Rev 93(2):599–652

    Article  CAS  PubMed  Google Scholar 

  70. DeCoursey TE (2010) Voltage-gated proton channels find their dream job managing the respiratory burst in phagocytes. Physiology (Bethesda) 25:27–40

    Article  CAS  Google Scholar 

  71. Henderson LM, Chappell JB, Jones OTG (1988) Superoxide generation by the electrogenic NADPH oxidase of human neutrophils is limited by the movement of a compensating charge. Biochem J 255:285–290

    CAS  PubMed  Google Scholar 

  72. Musset B, Cherny VV, Morgan D et al (2009) The intimate and mysterious relationship between proton channels and NADPH oxidase. FEBS Lett 583:7–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Morgan D, Cherny VV, Finnegan A et al (2007) Sustained activation of proton channels and NADPH oxidase in human eosinophils and murine granulocytes requires PKC but not cPLA2α activity. J Physiol 579:327–344

    Article  CAS  PubMed  Google Scholar 

  74. Musset B, Capasso M, Cherny VV et al (2010) Identification of Thr29 as a critical phosphorylation site that activates the human proton channel Hvcn1 in leukocytes. J Biol Chem 285:5117–5121

    Article  CAS  PubMed  Google Scholar 

  75. Sigworth FJ (1995) Electronic design of the patch clamp. In: Sakmann B, Neher E (eds) Single channel recording, 2nd edn. Plenum Press, New York, pp 95–127

    Chapter  Google Scholar 

  76. Goldman DE (1943) Potential, impedance, and rectification in membranes. J Gen Physiol 27:37–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Hodgkin AL, Katz B (1949) The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol 108:37–77

    CAS  PubMed  Google Scholar 

  78. Byerly L, Moody WJ (1986) Membrane currents of internally perfused neurons of the snail, Lymnaea stagnalis, at low intracellular pH. J Physiol 376:477–491

    CAS  PubMed  Google Scholar 

  79. Kapus A, Romanek R, Qu AY et al (1993) A pH-sensitive and voltage-dependent proton conductance in the plasma membrane of macrophages. J Gen Physiol 102:729–760

    Article  CAS  PubMed  Google Scholar 

  80. Levis RA, Rae JL (1992) Constructing a patch clamp setup. Methods Enzymol 207:14–66

    Article  CAS  PubMed  Google Scholar 

  81. Levis RA, Rae JL (1993) The use of quartz patch pipettes for low noise single channel recording. Biophys J 65:1666–1677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Cota G, Armstrong CM (1988) Potassium channel “inactivation” induced by soft-glass patch pipettes. Biophys J 53:107–109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Rojas L, Zuazaga C (1988) Influence of the patch pipette glass on single acetylcholine channels recorded from Xenopus myocytes. Neurosci Lett 88:39–44

    Article  CAS  PubMed  Google Scholar 

  84. Neher E (1992) Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol 207:123–131

    Article  CAS  PubMed  Google Scholar 

  85. Ng B, Barry PH (1995) The measurement of ionic conductivities and mobilities of certain less common organic ions needed for junction potential corrections in electrophysiology. J Neurosci Methods 56:37–41

    Article  CAS  PubMed  Google Scholar 

  86. Miller C, Moczydlowski E, Latorre R et al (1985) Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle. Nature 313:316–318

    Article  CAS  PubMed  Google Scholar 

  87. Galvez A, Gimenez-Gallego G, Reuben JP et al (1990) Purification and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion Buthus tamulus. J Biol Chem 265:11083–11090

    CAS  PubMed  Google Scholar 

  88. Hermann A, Erxleben C (1987) Charybdotoxin selectively blocks small Ca-activated K channels in Aplysia neurons. J Gen Physiol 90:27–47

    Article  CAS  PubMed  Google Scholar 

  89. Sands SB, Lewis RS, Cahalan MD (1989) Charybdotoxin blocks voltage-gated K+ channels in human and murine T lymphocytes. J Gen Physiol 93:1061–1074

    Article  CAS  PubMed  Google Scholar 

  90. Cherny VV, Markin VS, DeCoursey TE (1995) The voltage-activated hydrogen ion conductance in rat alveolar epithelial cells is determined by the pH gradient. J Gen Physiol 105:861–896

    Article  CAS  PubMed  Google Scholar 

  91. Morgan D, DeCoursey TE (2007) Analysis of electrophysiological properties and responses of neutrophils. Methods Mol Biol 412:139–175

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH grants HL61437 and GM087507 and NSF grant MCB-0943362.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Morgan, D., DeCoursey, T.E. (2014). Analysis of Electrophysiological Properties and Responses of Neutrophils. In: Quinn, M., DeLeo, F. (eds) Neutrophil Methods and Protocols. Methods in Molecular Biology, vol 1124. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-845-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-845-4_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-844-7

  • Online ISBN: 978-1-62703-845-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics