Skip to main content

Modern Methods for Rapid X-Ray Diffraction Data Collection from Crystals of Macromolecules

  • Protocol
Crystallographic Methods and Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 56))

  • 1690 Accesses

Abstract

During the last 8 years, there has been a revolution in X-ray crystallographic data-collection technology, resulting in an enormous increase in data-acquisition rates and in the range of macromolecules that can be investigated in most laboratories. Provided that the macromolecule forms crystals of reasonable size (minimum of 100 µm in the largest dimension for in-house experiments) and quality, the next step in the determination of its three-dimensional structure is to collect X-ray diffraction data. Some fairly sophisticated equipment is required for this: an X-ray generator, an X-ray detector, and a system of stepping motors (“a goniometer”) with translational slides and rotational arcs above them (“goniometer head”) on which the crystal in a glass or quartz capillary tube is usually held using plasticene and then aligned in the X-ray beam. This chapter will outline the principles of the most commonly used laboratory equipment, and give the basic steps involved in data collection and processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arndt, U. W. (1986) X-ray Position-sensitive detectors. J Appl Cryst 19, 145–163

    Article  Google Scholar 

  2. Pflugrath, J. W. (1992) Developments in X-ray detectors. Curr Opinion Structural Biol 2, 811–815.

    Article  CAS  Google Scholar 

  3. Cork, C., Hamlin, R., Vernon, W., and Xuong, Ng. H. (1975) A Xenon-filled multiwire area detector for X-ray diffraction. Acta Cryst A31, 702,703

    CAS  Google Scholar 

  4. Hamlin, R., Cork, C., Howard, A, Nielsen, C, Vernon, W., Matthews, D., and Xuong, Ng. H. (1981) Characteristics of a flat multiwire area detector for protein crystallography. J Appl Cryst 14, 85–93.

    Article  CAS  Google Scholar 

  5. Hamlin, R. (1985) Multiwire area X-ray diffractometers, in Methods in Enzymology, vol. 114 (Wyckoff, H W., Hirs, C. H. W., and Timasheff, S. N, eds.), Academic, Orlando, FL, pp. 416–451.

    Google Scholar 

  6. Xuong, Ng. H., Sullivan, D., Nielsen, C., and Hamlin, R. (1985) Use of the multiwire area detector diffractometer as a national resource for protein crystallography. Acta Cryst B41, 267–269

    Google Scholar 

  7. Durbin, R M, Burns, R, Moulai, J, Metcalf, P, Freymann, D, Blum, M, Anderson, J E, Harrison, S C, and Wiley, D C (1986) Protein, DNA, and vu-us crystallography with a focused Imaging proportional counter. Science 232, 1127–1132

    Article  CAS  Google Scholar 

  8. Howard, A J., Gilliland, G L, Finzel, B C, and Poulos, T L, Ohlendorf, D H, and Salemme, F R. (1987) The use of an imaging proportional counter in macro-molecular crystallography. J Appl Cryst 20, 383–387

    Article  CAS  Google Scholar 

  9. Arndt, U W (1982) X-ray television area detectors. Nucl Instrum Methods 201, 13–20

    Article  CAS  Google Scholar 

  10. Arndt, U.W, and Thomas, D J (1982) High-speed single crystal television X-ray diffractometer (hardware). Nucl Instrum Methods 201, 21–25

    Article  CAS  Google Scholar 

  11. Miyahara, J, Takahashi, K., Amemiya, Y, Kamiya, N., and Satow, Y (1986) A new type of X-ray area detector utilising laser stimulated luminescence. Nucl Instrum Methods A246, 572–578

    CAS  Google Scholar 

  12. Amemiya, Y and Miyahara, J (1988) Imaging plate illuminates many fields. Nature 336, 89,90

    Article  CAS  Google Scholar 

  13. Hendrix, J and Lentfer, A (1988) An imaging plate scanner. EMBL Research Reports 170,171

    Google Scholar 

  14. Sato, M, Yamamoto, M, Imada, K, Katsube, Y, Tanaka, N, and Higashi, T (1992) A high-speed data-collection system for large-unit-cell crystals using an imaging plate as a detector. J Appl Cyst 25, 348–357

    Article  CAS  Google Scholar 

  15. Strauss, M G, Westbrook, E M, Naday, I, Coleman, T A, Westbrook, M L, Travis, D J, Sweet, R M., Pflugrath, J W, and Stanton, M (1991) Large aperture CCD X-ray detector for protein crystallography using a fibreoptic taper, in Charged Coupled Devices and Solid State Optical Sensors II. SPIE 1447, pp 12–27

    Google Scholar 

  16. Arndt, U W and Gilmore, D J (1979) X-ray television area detectors for macromolecular structural studies with synchrotron radiation sources. J Appl Cryst 12, 1–9

    Article  CAS  Google Scholar 

  17. Wonacott, A J (1977) Geometry of the rotation method, in The Rotation Method in Crystallography (Arndt, U W and Wonacott, A J, eds), North-Holland, Amsterdam, pp 77–103

    Google Scholar 

  18. Ealick, S E and Walter, R. L (1993) Synchrotron beamlines for macromolecular crystallography. Curr Opinion in Structural Biol 3, 725–736

    Article  CAS  Google Scholar 

  19. Hadju, J and Johnson, L N. (1990) Progress with Laue diffraction studies on protein and virus crystals. Biochemistry 29, 1669–1678

    Article  Google Scholar 

  20. Clifton, I J, Fulop, V, Hadfield, A, Nordlund, P, Andersson, I, and Hadju, J (1991) Macromolecular structure, function and dynamics by fast crystallography with synchrotron radiation. Nucl. Instrum. Methods A303, 476–487

    CAS  Google Scholar 

  21. Sobottka, S. E., Chandross, R. J, Cornick, G C., Kretsinger, R. H., and Rains, R G (1990) Design and performance of the multiwire area X-ray diffractometer at the University of Virginia. J Appl Cryst 23, 199–208

    Article  Google Scholar 

  22. Baru, S E., Proviz, G. I, Savinov, G. A, Sidorov, V. A, Khabakhpashev, A G., Shekhtman, L I, Shuvalov, B N., and Yasenev, M V (1983) Two-coordinate X-ray detector. Nucl Instrum Methods 208, 445–447

    Article  CAS  Google Scholar 

  23. Gruner, S M, Milch, J R, and Reynolds, G T. (1982) Slow-scan silicon-intensified target-TV X-ray detector for quantitive recording of weak X-ray images. Rev Sci Instrum 53(11), 1770–1778

    Article  Google Scholar 

  24. Kahn, R., Fourme, R, Bosshard, R., and Saintage, V. (1986) An area-detector diffractometer for the collection of high resolution and multiwavelength anomalous diffraction data in macromolecular crystallography. Nucl Instrum Methods A246, 596–603

    CAS  Google Scholar 

  25. Blum, M, Metcalf, P, Harrison, S C., and Wiley, D C (1987) A System for collection and on-line integration of X-ray diffraction data from a multiwire area detector. J Appl Cyst 20, 235–242.

    Article  CAS  Google Scholar 

  26. Howard, A. (1993) XENGEN Version 2 1 1993. Unpublished.

    Google Scholar 

  27. Kabsch, W (1988) Evaluation of single-crystal X-ray diffraction data from a position-sensitive detector. J Appl Cryst 21, 916–924

    Article  CAS  Google Scholar 

  28. Kabsch, W (1993) Automatic processing of rotation diffraction data from crystals of initially unknown cell constants. J Appl Cryst 26, 795–800.

    Article  CAS  Google Scholar 

  29. SAINT (1993) Siemens Area Detection Integration Software. Unpublished.

    Google Scholar 

  30. Klinger, A L and Kretsinger, R. H. (1989) LATTICEPATCH—an interactive graphics program to design data measurement strategies for area detectors. J Appl Cryst 22, 287–293

    Article  Google Scholar 

  31. Harris, M R, Fitzgibbon, M., and Hage, F. (1989) RSPACE-a reciprocal-space modelling tool. J Appl Cryst 22, 624–627

    Article  Google Scholar 

  32. ASTRO (1992) Area detector strategy organiser Siemens, unpublished

    Google Scholar 

  33. Xuong, N H, Nielsen, C., Hamlin, R, and Anderson, D (1985) Strategy for data collection from protein crystals using a multiwire counter area detector diffractometer. J Appl Cryst 18, 342–350

    Article  Google Scholar 

  34. Edwards, S L, Nielsen, C, and Xuong, Ng H. (1988) Screened precession method for area detectors. Acta Cryst B44, 183–187

    CAS  Google Scholar 

  35. Shierbeek, A. and Parlevliet, D (1991) New developments of an X-ray television detector. Nucl Instrum Methods A310, 571–575

    Google Scholar 

  36. Messerschmidt, A. and Pflugrath, J. W. (1987) Crystal orientation and X-ray pattern prediction routines for area-detector diffractometer systems in macromolecular crystallography. J Appl Cryst 20, 306–315.

    Article  CAS  Google Scholar 

  37. Sakabe, N (1991) X-ray diffraction data collection system for modern protein crystallography with a Weissenberg camera and an image plate using synchrotron radiation. Nucl. Instrum Methods Phys Res. (A)303, 448–463.

    CAS  Google Scholar 

  38. Stuart, D. I. and Jones, E. Y. (1993) Weissenberg data collection for macromolecular crystallography. Curr. Opmlon in Structural Biol 3, 737–740.

    Article  CAS  Google Scholar 

  39. Howard, A. J., Nielsen, C., and Xuong, Ng H. (1985) Software for a diffractometer with multiwire area detector, in Methods in Enzymology, vol. 114 (Wyckoff, H W., Hirs, C H. W., Timasheff, S. N., eds.), Academic, Orlando, FL, pp 452–471.

    Google Scholar 

  40. Thomas, D J (1989) Calibrating an area-detector diffractometer. Imaging geometry. Proc. R Sot. Lond. A425, 129–167

    Article  Google Scholar 

  41. Leslie, A G W. (1992) Recent changes to the MOSFLM package for processing film and image plate data. CCP4 and ESF-EACMB Newsletter on Protein Crystallography, Number 26.

    Google Scholar 

  42. Higashi, T. (1989) The processing of diffraction data taken on a screenless weissenberg camera for macromolecular crystallography. J Appl Cryst 22, 9–18.

    Article  CAS  Google Scholar 

  43. Higashi, T (1990) Auto-indexing of oscillation images. J Appl Cryst 23, 253–257

    Article  CAS  Google Scholar 

  44. Rossmann, M. G (1979) Processing oscillation diffraction data for very large unit cells with an automatic convolution technique and profile fitting. J Appl Cryst 12, 225–238

    Article  CAS  Google Scholar 

  45. Kim, S (1989) Auto-Indexing oscillation photographs. J Appl Cryst 22, 53–60

    Article  CAS  Google Scholar 

  46. Tanaka, I., Yao, M, Suzuki, M, Hikichi, K, Matsumoto, T, Kozasa, M, and Katayama, C (1990) An automatic diffraction data collection system with an imaging plate. J Appl Cyst 23, 334–339

    Article  Google Scholar 

  47. Otwinowski, Z (1993) Oscillation data reduction program, in Data Collection and Processing (Sawyer, L, Isaacs, N., and Bailey, S., eds), SERC Daresbury Laboratory, Warrington, UK, DL/SC1/R34, pp. 56–62

    Google Scholar 

  48. Bricogne, G (1987) The EEC cooperative programming workshop on positionsensitive detector software, in Computational Aspects of Protein Crystal Data Analysis (Helliwell, J R., Machin, P. A, and Papiz, M Z, eds), SERC Daresbury Laboratory, Warrington, UK, DL/SCl/R25, pp. 120–135

    Google Scholar 

  49. Kabsch, W (1988) Automatic indexing of rotation diffraction patterns. J Appl Cryst 21, 67–71

    Article  CAS  Google Scholar 

  50. Howard, A (1986) Autoindexing, in Proceedings of the EEC Cooperative Workshop on Position-Sensitive Detector Software (Phases I and II), LURE, Paris, May 26–June 7, 1986, pp. 89–94

    Google Scholar 

  51. Diamond, R (1969) Profile analysts in single crystal diffractometry. Acta Cryst A25, 43–55

    Google Scholar 

  52. Evans, P. R. (1993) Data reduction, in Data Collection and Processing (Sawyer, L, Isaacs, N, and Bailey, S, eds), SERC Daresbury Laboratory, Warrington, UK, DL/SCl/R34, pp 28–32

    Google Scholar 

  53. Derewenda, Z. and Helliwell, J. R (1989) Calibration tests and use of a Nicolet/Xentronics imaging proportional chamber mounted on a conventional source for protein crystallography. J Appl Cryst 22, 123–137

    Article  CAS  Google Scholar 

  54. Garman, E F (1993) Problematic data sets give up or persist? in Data Collection and Processing (Sawyer, L., Isaacs, N, and Bailey, S., eds), SERC Daresbury Laboratory, Warrington, UK, DL/SCl/R34, pp 28–32.

    Google Scholar 

  55. Petsko, G. A (1975) Protein crystallography at sub-zero temperatures Cryoprotective mother liquors for protein crystals. J Mol Biol 96, 381–392

    Article  CAS  Google Scholar 

  56. Dewan, J. C. and Tilton, R. F (1987) Greatly reduced radiation damage in ribonuclease crystals mounted on glass fibers. J Appl Cryst 20, 130–132.

    Article  CAS  Google Scholar 

  57. Hope, H. (1988) Cryocrystallography of biological macromolecules: a generally applicable method. Acta Cyst B44, 22–26

    Article  CAS  Google Scholar 

  58. Teng, T-Y. (1990) Mounting of crystals for macromolecular crystallography in a free-standing thin film. J Appl Cryst 23, 387–391

    Article  CAS  Google Scholar 

  59. Gamblin, S. J and Rodgers, D W (1993) Some practical details of data collection at 100K, in Data Collection and Processing (Sawyer, L, Isaacs, N., and Bailey, S, eds.), SERC Daresbury Laboratory, Warrington, UK, DL/SCl/R34, pp 28–32.

    Google Scholar 

  60. Mitchell, E. P and Garman, E F (1994) Flash freezing of protein crystals investigation of mosaic spread and diffraction limit with variation of cryoprotectant concentration. J Appl Cryst 27, 1070–1074

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Humana Press Inc.

About this protocol

Cite this protocol

Garman, E.F. (1996). Modern Methods for Rapid X-Ray Diffraction Data Collection from Crystals of Macromolecules. In: Jones, C., Mulloy, B., Sanderson, M.R. (eds) Crystallographic Methods and Protocols. Methods in Molecular Biology™, vol 56. Humana Press. https://doi.org/10.1385/0-89603-259-0:87

Download citation

  • DOI: https://doi.org/10.1385/0-89603-259-0:87

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-259-0

  • Online ISBN: 978-1-59259-543-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics