Skip to main content

Genomic Yeast DNA Clone Banks

Construction and Gene Isolation

  • Protocol
Yeast Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 53))

  • 2370 Accesses

Abstract

Techniques for constructing genomic yeast DNA libraries and for isolating yeast genes from them, mainly by complementation, have been known for over 15 yr. The first method (1) involved making the library in an Escherichia coli plasmid vector, but as soon as “shuttle” vectors—capable of stable propagation in both E. coli and Saccharomyces cerevisiae—became available, these were used in preference. The key advantage of shuttle vectors is that they permit selection for expression of yeast genes in a yeast S. cerevisiae host, but the vector containing the desired yeast gene can then be transferred (“shuttled”) back to allow easier plasmid DNA isolations and manipulations. In essence, the usual approach is to isolate pure genomic DNA from the yeast of interest, partially digest the DNA with an appropriate restriction enzyme (so ensuring any particular sequence of interest will occur intact, on a reasonably sized DNA fragment), size-fractionate the cut DNA (to eliminate small, under gene-sized fragments), insert the DNA in an appropriate shuttle vector, and transform it into E. coli, to make an initial, bacterial, clone library. E. coli transformation is very efficient, compared with yeast transformation, and so allows a good-sized clone library to be generated from even relatively small quantities of ligated genomic-vector DNA. Library DNA is then extracted from the pooled E. coli clones and transformed into an appropriate host strain of S. cerevisiae, thus creating a clone library in yeast, which is then used to screen or select for a desired gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Struhl, K., Cameron, J. R., and Davis, R. W. (1976) Functional genetic expression of eukaryotic DNA in Escherichia coli. Proc. Natl. Acad. Sci. USA 73, 1471–1475.

    Article  PubMed  CAS  Google Scholar 

  2. Parent, S. A., Fenimore, C. M., and Bastian, K. A. (1985) Vector systems for the expression, analysts and cloning of DNA sequences in Saccharomyces cerevisiae. Yeast 1, 83–138.

    Article  PubMed  CAS  Google Scholar 

  3. Naysmith, K. A. and Reed, S. I. (1980) Isolation of genes by complementation in yeast molecular cloning of a cell-cycle gene. Proc. Natl. Acad. Sci. USA 77, 2119–2123.

    Article  Google Scholar 

  4. Tréton, B. Y., Le Dall, M.-T., and Gaillardin, C. M. (1992) Complementation of acid phosphatase mutation by a genomic sequence from the yeast Yarrowia lipolytica identifies a new phosphatase. Curr. Genet. 22, 345–355.

    Article  PubMed  Google Scholar 

  5. Kinsella, B. T., Larkin, A., Bolton, M., and Cantwell, B. A. (1991) Molecular cloning and characterisation of a Candida tsukubaensis α-glucosidase gene in Saccharomyces cerevisiae. Curr. Genet. 20, 45–52.

    Article  PubMed  CAS  Google Scholar 

  6. Abarca, D., Fernandez-Lobato, M., and Jiminez, A. (1991) Isolation of new gene (SWA2) encoding an α-amylase from Schwanniomyces occidentalis and its expression in Saccharomyces cerevisiae. FEBS Lett. 279, 41–44.

    Article  PubMed  CAS  Google Scholar 

  7. Stark, M. J. R. and Milner, J. F. (1989) Cloning and analysis of the Kluyveromyces lactis TRP1 gene: a chromosomal locus flanked by genes encoding inorganic pyrophosphatase and histone H3. Yeast 5, 35–50.

    Article  PubMed  CAS  Google Scholar 

  8. Tsay, Y. H. and Robinson, G. W. (1991) Cloning and characterisation of ERG8, an essential gene of Saccharomyces cerevisiae that encodes phosphomevalonate kinase. Mol. Cell Biol. 11, 620–631.

    PubMed  CAS  Google Scholar 

  9. Burke, D. T., Carle, G. F., and Olson, M. V. (1987) Cloning large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 2336, 806–812.

    Article  Google Scholar 

  10. Sikorski, R. S. and Hiefer, P. (1989) A system of shuttle vectors and host strains designed to give efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 122, 19–27.

    PubMed  CAS  Google Scholar 

  11. Romanos, M. A., Scorer, C. A., and Clare, J. J. (1992) Foreign gene expression in yeast: a review. Yeast 8, 412–488.

    Article  Google Scholar 

  12. Brearley, R. D. and Kelly, D. E. (1991) Genetic engineering techniques in yeast, in Genetically-engineered proteins and enzymes from yeasts: production and control (Wiseman, A., ed.), Ellis Horwood, Chichester, pp. 75–95.

    Google Scholar 

  13. Cryer, D. R., Eccleshall, R., and Marmur, J. (1975) Isolation of yeast DNA, in Methods in Cell Biology (Prescott, D. M., ed.), Academic, New York and London, pp. 39–44.

    Google Scholar 

  14. Birnboim, H. C. and Doly, J. (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7, 1513–1523.

    Article  PubMed  CAS  Google Scholar 

  15. Ward, A. C. (1990) Single-step purification of shuttle vectors from yeast for high frequency back transformation into E. coli. Nucleic Acids Res. 18, 5319.

    Article  PubMed  CAS  Google Scholar 

  16. Bignell, G. R., Bruce, I. J., and Evans, I. H. Electrophoretic karyotype of the amylolytic yeast Lipomyces starkeyi and cloning and chromosomal localisation of its TRP1 gene, Current Genetics, in press.

    Google Scholar 

  17. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  18. Gingold, E. B. (1984) The use of restriction endonucleases, in Methods in Molecular Biology, vol 2, Nucleic Acids. (Walker, J. W., ed.), Humana, Clifton, NJ, pp. 217–223.

    Google Scholar 

  19. McClelland, M., Hanish, J., Nelson, M., and Patel, Y. (1988) KGB: a single buffer for all restriction endonucleases. Nucleic Acids Res. 16, 364.

    Article  PubMed  CAS  Google Scholar 

  20. Gaastra, W. and Jorgensen, P. L. (1984) The extraction and isolation of DNA from gels, in Methods in Molecular Biology, vol 2 (Walker, J. M., ed.), Humana, Clifton, NJ, pp. 67–76.

    Google Scholar 

  21. Dale, J. W. and Greenaway, P. J. (1984) The use of alkaline phosphase to prevent vector regeneration, in Methods in Molecular Biology, vol 2, Nucleic Acids (Walker, J. W., ed.), Humana, Clifton, NJ, pp. 231–236.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Bignell, G.R., Evans, I.H. (1996). Genomic Yeast DNA Clone Banks. In: Evans, I.H. (eds) Yeast Protocols. Methods in Molecular Biology™, vol 53. Humana Press. https://doi.org/10.1385/0-89603-319-8:155

Download citation

  • DOI: https://doi.org/10.1385/0-89603-319-8:155

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-319-1

  • Online ISBN: 978-1-59259-540-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics