Skip to main content

Continuous-Flow Cell-Free Translation, Transcription-Translation, and Replication-Translation Systems

  • Protocol
Protein Synthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 77))

Abstract

The continuous inflow of consumable substrates and outflow of products tremendously increase the lifetime of cell-free protein synthesizing systems (1). As a consequence, the protein yield of the continuous-flow cell-free (CFCF) translation can be raised up to two orders of magnitude, as compared with classical batch systems. The CFCF protein synthesis technique can be utilized for basic research in the field of protein synthesis and folding as well as for numerous applications in biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spirin, A. S., Baranov, V. I., Ryabova, L. A., Ovodov, S. Yu, and Alakhov, Yu. B (1988) A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242, 1162–l164.

    Article  PubMed  CAS  Google Scholar 

  2. Ryabova, L. A., Ortlepp, S. A., and Baranov, V. I. (1989) Preparative synthesis of globin in a continuous cell-free translation system from rabbit reticulocytes. Nucl. Acids Res. 17, 4412.

    Article  PubMed  Google Scholar 

  3. Gallie, D. R., Feder, J. N., Schimke, R. T., and Walbot, V. (1991) Post-transcriptional regulation in higher eukaryotes. the role of the reporter gene in controlling expression. Mol. Gen. Genet. 228, 258–264.

    Article  PubMed  CAS  Google Scholar 

  4. Leathers, V., Tanguay, R., Kobayashi, M., and Gallie, D. R. (1993) A phylogenetically conserved sequence within viral 3′ untranslated RNA pseudoknots regulates translation. Mol. Cell Biol. 13, 5331–5347.

    PubMed  CAS  Google Scholar 

  5. Ryabova, L. A., Torgashov, A. F., Kurnasov, O. V., Bubunenko, M. G., and Spirin, A. S. (1993) 3′-untranslated region of alfalfa mosaic virus RNA 4 facilitates the RNA entry into translation in a cell-free system. FEBS Lett. 326, 264–266.

    Article  PubMed  CAS  Google Scholar 

  6. Danthinne X., Seurinck, J., Meulewaeter, F, Van Montagu, M., and Cornelissen, M. (1993) The 3′-untranslated region of satellite tobacco necrosis virus RNA stimulates translation in vitro. Mol. Cell Biol. 13, 3340–3349.

    PubMed  CAS  Google Scholar 

  7. Timmer, R. T., Benkowski, L. A., Schodin, D., Lax, S. R., Metz, A. M., Ravel, J. M., and Browning, K. S. (1993) The 5′ and 3′ untranslated regions of satellite tobacco necrosis virus RNA affect translational efficiency and dependence on a 5′ cap structure. J. Biol Chem. 268, 9504–9510.

    PubMed  CAS  Google Scholar 

  8. Zeyenko, V. V., Ryabova, L. A., Gallie, D. R., and Spirin, A. S. (1994) Enhancing effect of the 3′-untranslated region of tobacco mosaic virus RNA on protein synthesis in vitro. FEBS Lett. 354, 271–273.

    Article  PubMed  CAS  Google Scholar 

  9. Katanaev, V. L., Kurnasov, O. V., and Spirin, A. S. (1995) Viral QB RNA as a high expression vector for mRNA translation in a cell-free system. FEBS Lett. 359, 89–92.

    Article  PubMed  CAS  Google Scholar 

  10. Ugarov, V. I., Morozov, I. Yu., Jung, G. Y., Chetverin, A. B., and Spirin A. S. (1994) Expression and stability of recombinant RQ-mRNAs in cell-free translation systems. FEBS Lett. 341, 131–134.

    Article  PubMed  CAS  Google Scholar 

  11. Baranov, V. I., Morozov, I. Yu., Ortlepp, S. A., and Spirin A. S. (1989) Preparative gene expression in a cell-free system. Gene 84, 463–466.

    Article  PubMed  CAS  Google Scholar 

  12. Kigawa, T. and Yokoyama, S. (1991) A continuous cell-free syntheses system for coupled transcription-translation. J. Biochem. (Japan) 110, 166–168.

    PubMed  CAS  Google Scholar 

  13. Spirin, A. S. (1992) Cell-free protein synthesis bioreactor, in Frontiers of Bioprocessing II (Todd, P., Sikdar, S. K., and Bier, M., eds.), American Chemical Society, Washington, DC, pp. 31–43.

    Google Scholar 

  14. Baranov, V. I. and Spirin, A. S. (1993) Gene expression in cell-free system on preparative scale. Meth. in Enzymol. 217, 123–142.

    Article  CAS  Google Scholar 

  15. Kudlicki, W., Kramer, G., and Hardesty, B. (1992) High efficiency cell-free synthesis of proteins refinement of the coupled transcription/translation system. Analyt. Biochem. 206, 389–393.

    Article  PubMed  CAS  Google Scholar 

  16. Chevrier-Miller, M., Jacques, N., Raibaud, O., and Dreyfus, M. (1990) Transcription of single-copy hybrid lacZ genes by T7 RNA polymerase in Escherichia coli: mRNA synthesis and degradation can be uncoupled from translation. Nucl. Acids Res. 18, 5787–5792.

    Article  PubMed  CAS  Google Scholar 

  17. Iost, I., Guillerez, J., and Dreyfus, M. (1992) Bacteriophage T7 RNA polymerase travels far ahead of ribosomes in vivo. J. Bacteriol. 174, 619–622.

    PubMed  CAS  Google Scholar 

  18. Morozov, I. Yu., Ugarov, V. I., Chetverin, A. B., and Sperm A. S. (1993) Synergism in replication and translatton of messenger RNA in a cell-free system. Proc. Natl. Acad. Sci. USA 90, 9325–9329.

    Article  PubMed  CAS  Google Scholar 

  19. Ryabova, L., Volianik, E., Kurnasov, O., Spirin, A., Wu, Y., and Kramer, F. R. (1994) Coupled replication-translation of amplifiable messenger RNA. J. Biol. Chem. 269, 1501–1505.

    PubMed  CAS  Google Scholar 

  20. Chetverin, A. B. and Spirin, A. S. (1995) RQ RNA vectors: prospects for cell-free gene amplification, expression and cloning, in Progress in Nucleic. Acid Research and Molecular Biology (Cohn, W. E. and Moldave, K., eds.) Academic, San Diego, CA, pp. 225–270.

    Google Scholar 

  21. Billeter, M. A., Libonati, M., Vinuela, E., and Weissmann, C. (1966) Replication of viral ribonucleic acid. J. Biol. Chem. 241, 4750–4757.

    PubMed  CAS  Google Scholar 

  22. Hotham-Iglewski, B., Phillips, L. A., and Franklin, R. M. (1968) Viral RNA transcription-translation complex in Escherichia coli infected with bacteriophage R17. Nature 219, 700–703.

    Article  PubMed  CAS  Google Scholar 

  23. Chen, H-Z. and Zubay, G. (1983) Prokaryotic coupled transcription-translation. Meth. Enzymol. 101, 674–690.

    Article  PubMed  CAS  Google Scholar 

  24. Gavrilova, L. P., and Sperin, A. S. (1974) “Nonenzymatic” Translation. Meth. Enzymol. 30, 452–470.

    Article  PubMed  CAS  Google Scholar 

  25. Gold, L. M. and Shweiger, M. (1971) Synthesis of bacteriophage-specific enzymes directed by DNA in vitro. Methods Enzymol. 20, 537–542.

    Article  Google Scholar 

  26. Gurevitch, V. V., Pokrovskaya, I. D., Obukhova, T. A., and Zozulia, S. A. (1991) Preparative in vitro mRNA synthesis using SP6 and T7 RNA polymerases. Analyt. Biochem. 195, 207–213.

    Article  Google Scholar 

  27. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4d. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  28. Baccanari, D. P., Phillips, A., Smith, S., Sinski, D., and Burchall, J. (1975) Purification and properties of Escherichia coli dihydrofolate reductase. Biochemistry 14, 5267–5273.

    Article  PubMed  CAS  Google Scholar 

  29. Stanley, W. M. and Wahba, A. J. (1967) Chromatographic purification of ribosomes. Meth. Enzymol. (Nucl. Acids, part A) 12, 524–526.

    Article  Google Scholar 

  30. Ryabova, L. A., Vinokurov, L. M., Shekhovtsova, E. A., Alakhov, Yu. B., and Spirin, A. S. (1995) Acetyl phosphate as an energy donor for bacterial cell-free translation systems. Anal. Biochem, 226, 184–186.

    Article  PubMed  CAS  Google Scholar 

  31. Lindner, P., Guth, B, Wulfing, C., Krebber, C., Steipe, B., Müller, F., and Pluckthun, A. (1992) Purification of native proteins from the cytoplasm and periplasm of Escherichia coli using IMAC and histidine tails a comparison of proteins and protocols. Methods: A Companion to Methods in Enzymology 4, 41–56.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Ryabova, L.A., Morozov, l.Y., Spirin, A.S. (1998). Continuous-Flow Cell-Free Translation, Transcription-Translation, and Replication-Translation Systems. In: Martin, R. (eds) Protein Synthesis. Methods in Molecular Biology, vol 77. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-397-X:179

Download citation

  • DOI: https://doi.org/10.1385/0-89603-397-X:179

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-397-9

  • Online ISBN: 978-1-59259-563-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics