Skip to main content

The Nematode Caenorhabditis elegans as a Model System to Study Neuronal Cell Death

  • Protocol
Apoptosis Techniques and Protocols

Part of the book series: Neuromethods ((NM,volume 29))

Abstruct

Normal development and homeostasis result from a tenuous balance between cell proliferation and cell death. Disruption of this balance, in favor of cell death in particular, could easily lead to pathological states in postmitotic organs such as the adult brain (see Thompson, 1995). For example, many neurodegenerative disorders are characterized by the premature death of specific subsets of neurons, which gives rise to their full clinical spectra (Coleman and Flood, 1987; Choi, 1988). Although a complete understanding of the selective cell degeneration in these conditions is still lacking, recent observations suggest that it may occur through apoptosis, a gene-directed type of cell death (Bredesen, 1995). In many cases, cell death by apoptosis requires an active role by the dying cells, because apoptosis is most often significantly blocked or delayed by inhibitors of RNA or protein synthesis (Wyllie et al., 1984). This genetic regulation of apoptosis offers a potential for therapeutic intervention and further assessment of apoptotic mechanisms in manifestations of neuropathology is warranted. However, employing conventional molecular and biochemical approaches, attempts to determine the genetic machinery responsible for specifying which cells live and which cells die have not always been successful in vertebrate systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boise L. H., González-Garcia M, Postema C. E, Ding L., Lindsten T., Turka L. A, Mao X, Nunez G., and Thompson C. B. (1993) bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptic cell death. Cell 74, 597–608.

    Article  PubMed  CAS  Google Scholar 

  • Bredesen D. E. (1995) Neural apoptosis. Ann. Neurol 38, 839–851

    Article  PubMed  CAS  Google Scholar 

  • Brenner S. (1974) The genetics of Caenorhabditis elegans. Genetics 77, 71–94

    PubMed  CAS  Google Scholar 

  • Buck L. and Axel R. (1991) A novel multigene family may encode odorant receptors a molecular basis for odor recognition. Cell 65, 175–187.

    Article  PubMed  CAS  Google Scholar 

  • Canessa C M, Honsberger J-D., and Rossier B C(1993) Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361, 467–470.

    Article  PubMed  CAS  Google Scholar 

  • Cerretti D P, Kozlosky C J, Mosley B, Nelson N, Ness K V, Greenstreet T. A, March C J, Kronheim S R, Druck T, Cannizzaro L A, Huebner K, and Black R. A (1992) Molecular cloning of the interleukin-iβ-converting enzyme Science 256, 97–100

    Article  PubMed  CAS  Google Scholar 

  • Chalfie M and White J. (1988) The nervous system, in The Nematode Caenorhabditis elegans Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Chalfie M and Wolinsky E(1990) The identification and suppression of inherited neurodegeneration in Caenorhabditis elegans Nature 345, 410–416

    Article  CAS  Google Scholar 

  • Chittenden T., Harrington E A, O’Connor R, Flemmgton C, Lutz R. J, Evan G. I, and Guild B C (1995) Induction of apoptosis by the Bcl-2 homolog Bak Nature 374, 733–736

    Article  PubMed  CAS  Google Scholar 

  • Choi D. (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623–634.

    Article  PubMed  CAS  Google Scholar 

  • Cleary M L, Smith S D., and Sklar J. (1986) Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulm transcript resulting from the t(14; 18) translocation. Cell 47, 19–28

    Article  PubMed  CAS  Google Scholar 

  • Coleman P D and Flood D G. (1987) Neuron numbers and dendritic extent in normal aging and Alzheimer’s disease. Neurobwl Aging 8, 521–545

    Article  CAS  Google Scholar 

  • Devereux J., Haeberh P., and Smithies O. (1984) A comprehensive set of sequence analysis programs Nucleic Acids Res 12, 387–395

    Article  PubMed  CAS  Google Scholar 

  • Driscoll M. and Chalfie M(1991) The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration Nature 349, 588–593

    Article  PubMed  CAS  Google Scholar 

  • Driscoll M (1992) Molecular genetics of cell death inthe nematode Caenorhabditis elegans J Neurobwl 23, 1327–1351

    CAS  Google Scholar 

  • Driscoll M. (1995) Methods for the study of cell death in the nematode Caenorhabditis elegans, in Methods in Cell Biology, vol 46 (Schwartz L. M and Osborne B. A. eds ), Academic, NY, pp 323–353.

    Google Scholar 

  • Ellis R E and Horvitz H R (1991) Two C elegans genes control the programmed death of specific cells in the pharynx. Development 112, 591–603

    PubMed  CAS  Google Scholar 

  • Ellis R E, Yuan J, and Horvitz H R (1991a) Mechanism and functions of cell death Ann Rev Cell Bwl. 7, 663–698.

    Article  CAS  Google Scholar 

  • Ellis R E., Jacobson D M, and Horvitz H R (1991b) Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans Genetics 129, 79–94

    CAS  Google Scholar 

  • Farrow S. N., White J. H. M., Martinou I, Raven T., Pun K.-T., Grinham C. J, Martinou J.-C, and Brown R (1995) Cloning of a bcl-2 homologue by interaction with adenovirus E1B 19K Nature 374, 731–733.

    Article  PubMed  CAS  Google Scholar 

  • Faucheu C, Dm A., Chan A W. E, Blanchet A.-M., Miossec C, Herve F., Collard-Dutilleul V., Gu Y, Aldape R. A., Lippke J A, Rocher C, Su M S S., Livingston D. J, Hercend T, and Lalanne J-L (1995) A novel human protease similar to the mterleukin-1β converting enzyme induces apoptosis in transfected cells EMBOJ 14, 1914–1922

    CAS  Google Scholar 

  • Fernandes-Alnemn T, Litwack G., and Alnemri E. S. (1994) CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein ced-3 and mammalian mterleukin-1β-con-verting enzyme. J Bwl Chem 269, 30,761–30,764.

    Google Scholar 

  • Fernandes-Alnemn T., Litwack G., and Alnemri E. S. (1995a) Mch-2, a new member of the apoptotic ced-3/Ice cysteine protease gene family. Cancer Res 55, 2737–2742.

    Google Scholar 

  • Fernandes-Alnemri T., Takahashi A, Armstrong R, Krebs J., Fritz L., Tomaselli K. J., Wang L., Yu Z, Croce C M., Salveson G, Earnshaw W C, Litwack G., and Alnemri E. S. (1995b) Mch3, a novel human apoptotic cysteine protease highly related to CPP32 Cancer Res 55, 6045–6052.

    PubMed  CAS  Google Scholar 

  • Gaghardini V., Fernandez P A., Lee R K. K., Drexler H. C. A, Rotello R. J., Fishman M, and Yuan J (1994) Prevention of vertebrate neuronal death by the crmA gene Science 263, 826–828

    Article  Google Scholar 

  • Goate A., Chartier-Harlm M C, Mullan M., Brown J, Crawford F, Fidani L, Giuffra L., Haynes A, Irving N., James L et al (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349, 704–706

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Garcia M, Pérez-Ballestro R., Ding L, Duan L, Boise L H, Thompson C. B., and Nunez G (1994) bcl-x L is the major bcl-x mRNA form expressed during munne development and its product localizes to mitochondria. Development 120, 3033–3042

    PubMed  CAS  Google Scholar 

  • Hengartner M O., Ellis R. E, and Horvitz H. R (1992) C elegans gene ced9 protects cells from programmed cell death Nature 356, 494–499

    Article  PubMed  CAS  Google Scholar 

  • Hengartner M. O. and Horvitz H R. (1994) C elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-onco-gene bcl-2 Cell 76, 665–676

    CAS  Google Scholar 

  • Hevelone J and Hartman P. S. (1988) An endonuclease from Caenorhabditis elegans partial purification and characterization Biochem Genet 26, 447–461

    Article  PubMed  CAS  Google Scholar 

  • Hockenbery D., Nunez G., Milliman C., Schreiber R. D., and Korsmeyer S J. (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348, 334–336.

    Article  PubMed  CAS  Google Scholar 

  • Horvitz H. R., Ellis H. M., and Sternberg P W. (1982) Programmed cell death in nematode development. Neurosci. Comment 1, 56–65.

    Google Scholar 

  • Horvitz H. R. (1988) Genetics of cell lineage, in The Nematode Caenorhadbitis elegans Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Horvitz H. R., Shaham S., and Hengartner M. O. (1994) The genetics of programmed cell death in the nematode Caenorhabdttis elegans Cold Spring Harbor Symposia on Quantitative Biology, vol. 59, pp. 377–385.

    CAS  Google Scholar 

  • Kamens J., Paskind M., Hugunin M., Talanian R V., Allen H., Banach D, Bump N., Hackett M., Johnston C. G., Li P., Mankovich J A., Terranova M, and Ghayur T (1995) Identification and characterization of ICH-2, a novel member of the mterleukm-1β-converting enzyme family of cysteine proteases. J Biol Chem 270, 15,250–15,256.

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann S. H., Desnoyers S., Ottaviano Y., Davidson N. E., and Poiner G. G (1993) Specific proteolytic cleavage of poly (ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis Cancer Res 53, 3976–3985.

    PubMed  CAS  Google Scholar 

  • Kiefer M. C, Brauer M J., Powers V. C, Wu J J, Umansky S. R., Tomei L. D., and Barr P. J. (1995) Modulation of apoptosis by the widely distributed Bcl-2 homolog Bak. Nature 374, 736–739.

    Article  PubMed  CAS  Google Scholar 

  • Kozopas K. M., Yang T., Buchan H. L., Zhou P., and Craig R. W(1993) MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2 Proc Natl Acad Sci. USA 90, 3516–3520.

    Article  PubMed  CAS  Google Scholar 

  • Kuida K., Lippke J. A., Ku G., Harding M. W., Livingston D J., Su M S.-S., and Flavell R. A. (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme. Science 267, 2000–2003.

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tomooka Y, and Noda M (1992) Identification of a set of genes with developmentally down-regulated expression in mouse brain. Biochem Biophys Res Comm 185, 1155–1161.

    Article  PubMed  CAS  Google Scholar 

  • Kumar S., Kinoshita M, Noda M, Copeland N G, and Jenkins N. A (1994) Induction of apoptosis by the mouse Nedd-2 gene, which encodes a protein similar to the product of the Caenorhabdttts elegans cell death gene ced-3 and the mammalian IL-1β-convertmg enzyme Genes Dev. 8, 1613–1626.

    Article  PubMed  CAS  Google Scholar 

  • Lazebnik Y. A., Cole S., Cooke C. A., Nelson W. G, and Earnshaw W. C. (1993) Nuclear events of apoptosis in vitro in cell-free mitotic extracts: a model system for analysis of the active phase of apoptosis. J.Cell Biol. 123, 7–22.

    Article  PubMed  CAS  Google Scholar 

  • Lazebnik Y. A., Kaufmann S. H., Desnoyers S.; Poirier G. G., and Earnshaw W. C. (1994) Cleavage of poly (ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346–347.

    Article  PubMed  CAS  Google Scholar 

  • Li P., Allen H., Banerjee S., Franklin S., Herzog L., Johnston C, McDowell J., Paskind M., Rodman L., Salfeld J., Towne E., Tracey D, Wardwell S., Wei F.-Y., Wong W., Kamen R., and Seshadri T(1995) Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1β and resistant to endotoxic shock. Cell 80, 401–411.

    Article  PubMed  CAS  Google Scholar 

  • Link C. D. (1995) Expression of human β-amyloid peptide in transgenic Caenorhabditis elegans Proc Natl Acad. Sci USA 92, 9368–9372

    Article  CAS  Google Scholar 

  • Loo D. T., Copani A., Pike C. J, Whittemore E. R., Walencewicz A J., and Cotman C. W. (1993) Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc. Natl Acad. Sci USA 90, 7951–7955.

    Article  PubMed  CAS  Google Scholar 

  • Majno G., and Joris I. (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146, 3–15.

    CAS  Google Scholar 

  • Maniatis T., Fritsch E. F., and Sambrook J. (1982) Molecular Cloning A Laboratory Manual Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Marchuk D., Drumm M., Saulino A., and Collins F. S. (1990) Construction of T-tailed vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res 19, 1154.

    Article  Google Scholar 

  • Martin S. J and Green G. R. (1995) Protease activation during apoptosis death by a thousand cuts? Cell 82, 349–352.

    Article  PubMed  CAS  Google Scholar 

  • Martinou J. C, Dubois-Dauphin M., Staple J. K, Rodriguez I., Frankowski H., Missoten M., Albertini P., Talabot D., Catsicas S., Pietra C., and Huarte J. (1994) Overexpression of Bcl-2 in transgenic mice protects neurons from naturally occuring cell death and experimental ischemia. Neuron 13, 1017–1030

    Article  PubMed  CAS  Google Scholar 

  • Mello C. C, Kramer J M, Stmchcomb D., and Ambros V. (1992) Efficient gene transfer in C elegans extrachromosomal maintenance and integration of transforming sequences. EMBO J 10, 3959–3970.

    Google Scholar 

  • Michelson A M, Abmayr S. M., Bate M., Anas A M., and Maniatis T (1990) Expression of a MyoD family member prefigures muscle pattern in Drosophila embryo Genes Dev 4, 2086–2097

    Article  PubMed  CAS  Google Scholar 

  • Milligan C. E, Prevette D, Yaginuma H., Homma S., Cardwell C., Fritz L. C, Tomaselli K J., Oppenheim R. W., and Schwartz L. M. (1995) Peptide inhibitors of the ICE protease family arrest programmed cell death of motoneurons in vivo and in vitro Neuron 15, 385–393

    CAS  Google Scholar 

  • Miura M., Zhu H., Rotello R., Hartwieg E. A., and Yuan J. (1993) Induction of apoptosis in fibroblast by IL-1β-convertmg enzyme, a mammalian homolog of the C elegans cell death gene ced-3. Cell 75, 653–660.

    CAS  Google Scholar 

  • Munday N A., Vaillancourt J. P., Ali A., Casano F. J., Miller D. K., Molineaux S. M., Yamin T.-T., Yu V. L., and Nicholson D. W. (1995) Molecular cloning and proapoptotic activity of ICErel-II and ICErel-III, members of the ICE/CED3 family of cysteine proteases. J Biol Chem. 270, 15,870–15,876.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson D. W., Ali A., Thornberry N. A., Vaillancourt J. P., Ding C. K, Gallant M., Gareau Y., Griffin P. R., Labelle M., Lazebnik Y. A., Munday N. A., Raju S. M., Smulson M. E., Yamin T.-T., Yu V. L., and Miller D. K. (1995) Identification and inhibition of the ICE/ CED-3 protease necessary for mammalian apoptosis. Nature 376, 37–43

    Article  PubMed  CAS  Google Scholar 

  • Oltvai Z N, Milliman C L, and Korsmeyer S J. (1993) Bcl-2 heterodimenzes in vivo with a conserved homolog, Bax, that accelerates programmed cell death Cell 74, 609–619

    Article  PubMed  CAS  Google Scholar 

  • Schreiber V, Hunting D, Trucco C, Gowans B, Grunwald D., deMurcia G., and Menissier de Murcia J. (1995) A dominant-negative mutant of human poly (ADPribose) polymerase affects cell recovery, apoptosis, and sister chromatid exchange following DNA damage. Proc Natl Acad Sa USA 92, 4753–4757.

    Article  CAS  Google Scholar 

  • Sulston J. E. and Horvitz H R. (1977) Postembryonic cell lineage of the nematode Caenorhabditis elegans Dev Biol 82, 110–156

    Article  Google Scholar 

  • Sulston J. E, Schierenberg E, White J G, and Thompson N (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans Dev Biol 100, 64–119

    Article  CAS  Google Scholar 

  • Tewari M, Quan L T., O’Rourke K, Desnoyers S, Zeng Z., Beidler D R, Poirier G. G., Salvesen G S, and Dixit V M (1995) Yama/ CPP32P, a mammalian homolog of CED-3, is a crm-A mhibitable protease that cleaves the death substrate poly (ADP-nbose) polymerase Cell 81, 801–809

    Article  PubMed  CAS  Google Scholar 

  • Thompson C B. (1995) Apoptosis in the pathogenesis and treatment of disease Science 267, 1456–1462.

    Article  PubMed  CAS  Google Scholar 

  • Vaux D L., Weissman I L., and Kim S K (1992) Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2 Science 258, 1955–1957.

    CAS  Google Scholar 

  • Wang L., Miura M, Bergeron L, Zhu H, and Yuan J (1994) Ich-1, an ice/ ced-3-related gene, encodes both positive and negative regulators of programmed cell death Cell 78, 739–750

    Article  PubMed  CAS  Google Scholar 

  • Waterston R and Sulston J (1995) The genome of Caenorhabditis elegans Proc Natl Acad, Sci USA 92, 10,836–10,840

    Article  CAS  Google Scholar 

  • Williams M. S and Henkart P A (1994) Apoptotic cell death induced by intracellular proteolysis. J Immunol 153, 4247–4255

    PubMed  CAS  Google Scholar 

  • Wyllie A. H. (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284, 555–556

    Article  PubMed  CAS  Google Scholar 

  • Wyllie A. H, Kerr J. F R., and Currie A. R (1980) Cell death the significance of apoptosis Intern Rev Cytol 68, 251–306.

    Article  CAS  Google Scholar 

  • Wyllie A. H, Morris R. G, Smith A L., and Dunlop D. (1984) Chromatin cleavage in apoptosis association with condensed chromatin morphology and dependance on macromolecular synthesis J Pathol 142, 67–77

    Article  PubMed  CAS  Google Scholar 

  • Yang E, Zha J., Jockel J, Boise J H, Thompson C B, and Korsmeyer S J. (1995) Bad, a heterodimenc partner for BCL-xL and Bcl-2, displaces Bax and promotes cell death Cell 80, 285–291

    Article  PubMed  CAS  Google Scholar 

  • Yin X.-M., Oltvai Z. N., and Korsmeyer S. T. (1994) BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimenzation with Bax Nature 369, 321–323.

    Article  PubMed  CAS  Google Scholar 

  • Yuan J and Horvitz H R. (1990) Genetic mosaic analysis of ced-3 and ced-4, two genes that control programmed cell death in the nematode C elegans Dev Biol. 138, 33–41.

    Article  CAS  Google Scholar 

  • Yuan J. and Horvitz H. R (1992) The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 116, 309–320.

    PubMed  CAS  Google Scholar 

  • Yuan J., Shaham S, Ledoux S., Ellis H. M., and Horvitz H. R. (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-convertmg enzyme Cell 75, 641–652

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this protocol

Cite this protocol

Desjardins, P., Ledoux, S. (1997). The Nematode Caenorhabditis elegans as a Model System to Study Neuronal Cell Death. In: Poirier, J. (eds) Apoptosis Techniques and Protocols. Neuromethods, vol 29. Humana Press. https://doi.org/10.1385/0-89603-451-8:255

Download citation

  • DOI: https://doi.org/10.1385/0-89603-451-8:255

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-451-8

  • Online ISBN: 978-1-59259-634-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics