Skip to main content

Transmembrane Signaling by Receptor Oligomerization

  • Protocol
Transmembrane Signaling Protocols

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 84))

Abstract

The coordmation of cell growth, differentiation, and other activities in a multicellular organism is precisely controlled by a plethora of growth factors or cytokines that achieve then effects upon the cell by binding to specific cell-surface receptors. The majority of these numerous receptors for growth factors and cytokines are bitopic integral-membrane proteins that contain an extracellular ligand-binding domain; a single transmembrane domain that is assumed to be an α-helix; and a cytoplasmic-effector domain (1,2). The cytoplasmic- effector domain may have enzymatic activity, as is the case for the growth-factor receptor tyrosine kinases (1); or it may require interaction with other cytoplasmic-signaling molecules—notably the Janus (JAK) kinases in the case of the cytokine-receptor superfamily (2,3). Over the years, several mechanisms have been suggested for how such bitopic-membrane proteins can transmit signals across the cell membrane upon binding of their cognate ligand (4). Intramolecular mechanisms that have been proposed involve ligand-induced conformational changes that are propagated through the single transmembrane α-helix or alter the association of the receptor with the membrane (a “push-pull” model). Objections to these models are based upon the stability of fully hydrogen-bonded transmembrane α-helices and the ease of deformability of a lipid bilayer. Any alteration in the membrane-spanning helix is likely to be “damped” by the readily deformable membrane that it spans (see ref. 4 for a discussion). In the late 1970s studies employing fluorescence-photobleaching recovery demonstrated that several growth factors, most notably epidermal-growth factor (EGF), induce ohgomerization of their specific receptors (5), and that this is necessary for a biological response (6). Yarden and Schlessinger subsequently showed that the purified EGF receptor tyrosme kinase undergoes dimerization upon binding to EGF (7), and that the dimeric form of the receptor displays elevated tyrosme kinase activity (8). EGF-induced EGF-receptor dimerization was also demonstrated in intact cells, using chemical crosslinking approaches (9,10). As a result of these observations, a model for signal transduction by allosteric receptor oligomerization was proposed (11). This model has since been confirmed for many receptor tyrosine kinases in addition to the EGF receptor, as well as for many of the cytokine receptors. The general ohgomerization model holds that inactive receptor monomers are in equilibrium with active receptor dimers such that, in the absence of ligand, the eqmhbrium greatly favors the monomeric form. Upon ligand binding, the equilibrium is shifted in favor of the activated dimer (which may be a homo- or heterodliner), with resultant biological effects. In the past 10 yr, our understanding of this process has developed greatly. Where tyrosine kinase activity is a property of the receptor (the receptor tyrosme kinases) or is associated with the receptor (as with JAK kinases bound to cytokine receptors), it appears that ligand-induced receptor oligomerization brings kinase molecules into close proximity such that they can phosphorylate one another. This trans-phosphorylation, together with additional possible conformational alterations upon ohgomerization, leads to stimulation of the kinase activity—coupling receptor oligomerization to receptor activation. In this chapter, we will concentrate primarily on the mechanistic aspects of ligand-induced receptor oligomerization, selecting examples for which the process has been most thoroughly studied. A common theme emerges from these studies, in which multivalent ligand binding provides the driving force to shift the monomer/oligomer equilibrium in favor of the oligomer. There are several variations on this common theme, which appear to be exploited to enhance signal diversity for a given combination of ligands and receptors. Details of the protein-protein interactions that are involved in coupling receptor activatron to the downstream-signaling cascades are discussed in the previous two chapters by Kuriyan and Mayer, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ullrich A and Schlessinger J. (1990) Signal transduction by receptors with tyrosme kinase activity Cell 61, 203–212.

    Article  PubMed  CAS  Google Scholar 

  2. Ktshtinoto T, Taga T., and Aktra S (1994) Cytokme signal transduction Cell 76, 252–262

    Google Scholar 

  3. Ihle J. N (1995) Cytokme receptor signaling Nature 377, 591–594

    Article  PubMed  CAS  Google Scholar 

  4. Bormann B. J. and Engelman D M. (1992) Intramembrane helix-helix assoctanon in oligomerization and transmembrane signaling Ann Rev Biophys Biomol Struct 21, 223–242.

    Article  CAS  Google Scholar 

  5. Schlessinger J (1978) in Cell Surface Events in Cellular Regulation (DeLisi C. and Blumenthal R., eds.), Elsevier, North Holland, 89–111.

    Google Scholar 

  6. Schechter Y, Hernaez L., Schlessinger J., and Cuatrecasas P. (1979) Local aggregation of hormone-receptor complexes is required for activation by epidermal growth factor. Nature 278, 835–838.

    Article  PubMed  CAS  Google Scholar 

  7. Yarden Y. and Schlessinger J. (1987) Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor Biochemistry 26, 1443–1451.

    Article  PubMed  CAS  Google Scholar 

  8. Yarden Y and Schlessinger J. (1987) Self-phosphorylation of epidermal growth factor receptor Evidence for a model of intermolecular allostertc activation. Biochemistry 26, 1434–1442

    Article  PubMed  CAS  Google Scholar 

  9. Fanger B. O., Austin K S, Earp H. S, and Ctdlowski J. A. (1986) Cross-linking of epidermal growth factor receptors in intact cells. Detection of initial stages of receptor clustering and determination of molecular weight of high-affinity receptors. Biochemistry 25, 6414–6420

    Article  PubMed  CAS  Google Scholar 

  10. Cachet C., Kashles 0, Chambaz E. M., King C. R., and Schlessinger J (1988) Demonstration of eptdermal growth factor-induced receptor olierization in living cells using a chemical covalent cross-linking agent. J Biol Chem 263, 3290–3295.

    Google Scholar 

  11. Schlessinger J (1988) Signal transduction by allostertc receptor oligomerization Trends Biochem Sci 13, 443–447.

    Article  PubMed  CAS  Google Scholar 

  12. Taga T. and Kishimoto T. (1993) Cytokine receptors and signal transduction FASEB J 7, 3387–3396.

    Google Scholar 

  13. Sprang S. R. and Bazan J. F. (1993) Cytokme structural taxonomy and mechanisms of receptor engagement. Curr Open Struct Biol 3, 815–827.

    Article  CAS  Google Scholar 

  14. Bazan J.F. (1990) Haemopoietic receptors and hellcal cytokmes Immunol Today 11, 350–354

    Article  PubMed  CAS  Google Scholar 

  15. Cunningham B C, Ultsch M, de Vos A. M., Mulkerrm M. G., Clauser K. R, and Wells J. A. (1991) Dimerization of the extracellular domain of the human growth hormone receptor by a single hormone molecule. Science 254, 821–825

    Article  PubMed  CAS  Google Scholar 

  16. de Vos A. M., Ultsch M., and Kossiakoff A A (1992) Human growth hormone and extracellular domain of its receptor. crystal structure of the complex Scwnce 255, 306–312.

    Article  Google Scholar 

  17. Fuh G, Cunningham B. C, Fukunaga R., Nagata S, Goeddel D. V, and Wells J A. (1992) Rational design of potent antagomsts to the human growth hormone receptor. Science 256, 1677–1680

    Article  PubMed  CAS  Google Scholar 

  18. Kossiakoff A. A, Somers W., Ultsch M, Andow K., Muller Y A, and de Vos A. M. (1994) Comparison of the intermediate complexes of human growth hormone bound to the human growth hormone and prolactin receptors. Prot Sci 3, 1697–1705.

    Article  CAS  Google Scholar 

  19. Philo J. S, Aoki K. H., Arakawa T, Narhi L 0, and Wen J (1996) Dimerizanon of the extracellular domain of the erythropoietin (EPO) receptor by EPO One high-affinity and one low-affinity interaction. Biochemistry 35, 1681–1691.

    Article  PubMed  CAS  Google Scholar 

  20. Horan T, Wen J, Narhi L, Parker V., Garcia A., Arakawa T, and Philo J (1996) Dimerization of the extracellular domain of granulocyte-colony stimulating factor receptor by llgand binding. A monovalent ligand induces 2 2 complexes Biochemistry 35, 4886–4896.

    Article  PubMed  CAS  Google Scholar 

  21. Hnaoka 0, Anaguchi H., Asakura A, and Ota Y (1995) Requirement for the immunoglobulin-like domain of granulocyte colony-stimulating factor receptor in formation of a 2 1 receptor-ligand complex. J Biol Chem 270, 25,928–25,934

    Article  Google Scholar 

  22. Robmson R. C., Grey L. M., Staunton D, Vankelecom H, Vernalhs A. B, Moreau J.-F., Stuart D I, Heath J K, and Jones E. Y (1994) The crystal structure of leukemia inhibitory factor Implications for receptor binding Cell 77, 1101–1116

    Article  Google Scholar 

  23. Paonessa G., Graziam R., De Servo A., Savmo R, Ciappom L., Lahm A., Salvati A L, Tomatti C, and Cihberto G. (1995) Two distinct and independent sites on IL-6 trigger gp130dimer formation and signaling EMBOJ 14, 1942–1951

    CAS  Google Scholar 

  24. Ward L. D, Howlett G. J, Discolo G., Yasukawa K., Hammacher A., Moritz R., and Simpson R J (1994) High affinity interleukm-6 receptor is a hexameric complex consisting of two molecules each of interleukm-6, interleukm-6 receptor and gp130 J Biol Chem 269, 23,286–23,289.

    PubMed  CAS  Google Scholar 

  25. Stahl N. and Yancopoulos G. D. (1993) The alphas betas, and kinases of cytokme receptor complexes Cell 74, 587–590

    Article  PubMed  CAS  Google Scholar 

  26. Walter M. R., Windsor W T, Nagabhushan T. L., Lundell D. J., Lunn C. A., Zauodny P J., and Narula S K. (1995) Crystal structure of a complex between interferon-γ and its soluble high-affinity receptor. Nature 376, 230–235.

    Article  PubMed  CAS  Google Scholar 

  27. Loetscher H. R., Gentz R., Zulauf M., Lustig A, Tabuchi H., Schlaeger E J, Brockhaus M., Gallati H., Maanneberg M., and Lesiauer W. (1991) Recombr-nant 55 kDa TNF receptor Stoichiometry of binding to TNFa and TNFβ and inhibition of TNF activity. J Biol. Chem 266, 18,324–18,329.

    PubMed  CAS  Google Scholar 

  28. Banner D. W., D’Arcy A., Janes W., Gentz R., Schoenfeld H.-J., Broger C., Loetscher H., and Lesslauer W. (1993) Crystal structure of the soluble human 55 kd TNF receptor-human TNFβ complex: Implinations for TNF receptor activation. Cell 73, 43l–445

    Article  Google Scholar 

  29. Ward C. W., Hoyne P A., and Flegg R. H. (1995) Insulin and epidermal growth factor receptors contam the cysteme repeat motif found in the tumor necrosis factor receptor. Proteins Struct, Funct, and Genet 22, 141–153

    Article  CAS  Google Scholar 

  30. Tartagha L A and Goeddel D. V. (1992) Tumor necrosts factor signaling: A dominant negative mutation supresses the activation of the 55 kDa tumor necrosis factor receptor. J Biol Chem 267, 4304–4307.

    Google Scholar 

  31. Engelmann H, Holtinan H., Brakebusch C, Avni S. Y, Sarov I., Nophar Y, Hadas E., Leitner O., and Wallach D. (1990) Antibodies to a soluble form of a tumor necrosis factor (TNF) receptor have TNF-like activity. J Biol. Chem 265, 14,497–14,504.

    PubMed  CAS  Google Scholar 

  32. Baker S. J. and Reddy E P (1996) Transducers of life and death TNF receptor superfamily and associated proteins. Oncogene 12, 1–9.

    PubMed  CAS  Google Scholar 

  33. Canals F. (1992) Signal transmission by epidermal growth factor receptor Coincidence of activation and olirierization Biochemistry 31, 4493–4501

    Article  PubMed  CAS  Google Scholar 

  34. Ullrich A. and Schlessinger J. (1990) Signal transduction by receptors with tyrosme kinase activity Cell 61, 203–212

    Article  PubMed  CAS  Google Scholar 

  35. Schlessinger J. and Ullrmh A. (1992) Growth factor signaling by receptor tyrosme kinases. Neuron 9, 383–391.

    Article  PubMed  CAS  Google Scholar 

  36. Kashles O., Yarden Y., Fischer R., Ullrich A, and Schlessinger J. (1991) A dominant negative mutation suppresses the function of normal eprdermal growth factors by heterodimerization. Mol Cell. Biol 11, 1454–1463.

    PubMed  CAS  Google Scholar 

  37. Ueno H, Colbert H., Escobedo J. A., and Williams L. T. (1991) Inhibition of PDGFβ receptor signal transduction by coexpression of a truncated receptor. Science 252, 844–848.

    Article  PubMed  CAS  Google Scholar 

  38. Amaya E., Musci T. J., and Kirschner M. W (1991) Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell 66, 257–270

    Article  PubMed  CAS  Google Scholar 

  39. Werner S., Wemberg W, Liao X., Peters K. G., Blessing M, Yuspa S, Werner R. L., and Willlams L T (1993) Targeted expression of a dommant-negative FGF receptor mutant in the epidermis of transgemc mice reveals a role for FGF in keratinocyte organization and differentiation. EMBO J 12.

    Google Scholar 

  40. Millauer B, Shawyer L K, Plate K. H, Risau W., and Ullrich A. (1994) Glio-blastoma growth inhibited in vivo by a dominant-negative FLK-1 mutant. Nature 367, 576–579.

    Article  PubMed  CAS  Google Scholar 

  41. Murillas R, Larcher F, Conti C J, Santos M., Ullrmh A., and Jorcano J. L (1995) Expression of a dominant negative mutant of eprdermal growth factor receptor in the epidermis of transgemc mice elicits striking alterations in hair follicle development and skm structure EMBOJ 14, 5216–5223

    CAS  Google Scholar 

  42. Riedel H., Dull T J, Schlessinger J, and Ullrich A. (1986) A chimaeric receptor allows insulin to stimulate tyrosme kinase activity of epidermal growth factor Nature 324, 68–70.

    Article  PubMed  CAS  Google Scholar 

  43. Oefner C, D’Arcy A., Wmkler F K., Eggimann B, and Hosang M (1992) Crystal structure of human platelet-derived growth factor BB. EMBO J 11, 3921–3926.

    PubMed  CAS  Google Scholar 

  44. Heldm C.-H., Ernlund A., Rorsman C., and Ronnstrand L (1989) Dimerization of B-type platelet-derived growth factor receptors occurs after ligand binding and is closely associated with receptor kinase activation. J Biol Chem 264, 8905–8912

    Google Scholar 

  45. Herren B., Rooney B., Weyer K. A., Iberg N, Schmid G, and Pech M (1993) Dimerization of extracellular domains of platelet-derived growth factor receptors: A revised model of receptor-ligand interaction J Biol Chem 268, 15,088–15,095

    PubMed  CAS  Google Scholar 

  46. Vassbotn F S., Andersson A., Westermark B, Heldm C.-H., and Ostinan A (1993) Reversion of autocrme transformation by a dominant negative platelet-derived growth factor mutant. Mol Cell Biol 13, 4066–4076.

    PubMed  CAS  Google Scholar 

  47. Fretto L J., Snape A. J., Tomlinson J E, Seroogy J J, Wolf D. L., LaRochelle W. J., and Geese N A. (1993) Mechanism of platelet-derived growth factor (PDGF) AA, AB, and BB binding to α and β PDGF receptor. J Biol Chem. 268, 3625–3631.

    PubMed  CAS  Google Scholar 

  48. Blechman J. M., Lev S., Brizzi M. F., Leitner O., Pegoraro L., Givol D, and Yarden Y. (1993) Soluble c-Kit proteins and antrreceptor monoclonal antibodies confine the binding site of the stem cell factor. J Biol Chem 268, 4399–4406.

    PubMed  CAS  Google Scholar 

  49. Lev S., Blechman J., Nishikawa S-1, Givol D., and Yarden Y. (1993) Interspecies molecular chimeras of Kit help define the binding site of the stem cell factor Mol Cell Biol 13, 2224–2234.

    PubMed  CAS  Google Scholar 

  50. Lev S., Yarden Y., and Givol D. (1992) A recombinant ectodomain of the receptor for the stem cell factor (SCF) retains ligand-induced receptor dimerization and antagonizes SCF-stimulated cellular responses. J Biol Chem 267, 10,86–10,873.

    Google Scholar 

  51. Lev S, Yarden Y., and Givol D. (1992) Dimerization and activation of the Kit receptor by monovalent and bivalent binding of the stem cell factor. J Biol Chem 267, 15,970–15,977

    PubMed  CAS  Google Scholar 

  52. Philo J. S., Wen J, Schwartz M G, Mendiaz E A, and Langley K. E (1996) Human stem cell factor dimer forms a complex with two molecules of the extracellular domain of its receptor, Kit. J Biol Chem 271, 6895–6902.

    Article  PubMed  CAS  Google Scholar 

  53. Lemmon M. A., Pmchasi D, Zhou M, Lax I, and Schlessinger J. (1997) Dimerization of Kit is driven by bivalent binding of stem cell factor. J Biol Chem 272, 6311–6317

    Article  PubMed  CAS  Google Scholar 

  54. Blechman J M., Lev S, Barg J, Eisenstem M, Vaks B, Vogel Z., Givol D., and Yarden Y (1995) The fourth immunoglobulin domain of the stem cell factor receptor couples ligand binding to signal transduction Cell 80, 103–113

    Article  PubMed  CAS  Google Scholar 

  55. Philo J, Talvenhermo J, Wen J, Rosenfeld R, Welcher A, and Arakawa T (1994) Interactions of neurotrophm-3 (NT-3), brain-derived neurotrophic factor (BDNF), and the NT3-BDNF heterodimer with the extracellular domain of the TrkB and TrkC receptors J Biol Chem 269, 27,840–27,846.

    PubMed  CAS  Google Scholar 

  56. Davrs S, Gale N. W., Aldrrch T H, Marsonprerre P C, Lhotak V, Pawson T., Goldfarb M., and Yancopoulos G. D. (1994) Lrgands for EPH-related receptor tyrosme kinases that require membrane attachment or clustering for activity. Science 266, 816–819.

    Article  Google Scholar 

  57. Rapraeger A C., Krufka A, and Olwin B B (1991) Requirement of heparan sulfate for bFGF-mediated frbroblast growth and myoblast drfferentratron Science 252, 1705–1708

    Article  PubMed  CAS  Google Scholar 

  58. Yayon A, Klagsbrun M, Esko J D., Leder P, and Orintz D M (1991) Cell-surface heparm-like molecules are required for binding of bFGF to its high-affinity receptor. Cell 64, 841–848

    Article  PubMed  CAS  Google Scholar 

  59. Orintz D. M., Yayon A., Flanagan J. G., Svahn C. M., Levi E., and Leder P. (1992) Heparm is required for cell-free binding of bFGF to a soluble receptor and for mrtogenests in whole cells. Mel Cell Biol 12, 240–247.

    Google Scholar 

  60. Mach H., Volkm D. B., Burke C. J., Mrddaugh C. R., Lmhardt R. J., Fromm J. R., Loganathan D., and Mattsson L (1993) Nature of the interactron of heparm wrth aFGF. Biochemistry 32, 5480–5489.

    Article  PubMed  CAS  Google Scholar 

  61. Sprvak-Kroizman T, Lemmon M A, Diukic I, Ladbury J E, Pinchasr D, Huang J, Jaye M., Crumley G, Schlessinger J, and Lax I. (1994) Heparm-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, actrvatron, and cell prolrferatron. Cell 79, 1015–1024.

    Article  Google Scholar 

  62. Klagsbrun M and Band A (1991) A dual receptor system IS required for bFGF activity. Cell 67, 229–231

    Article  PubMed  CAS  Google Scholar 

  63. Schlessinger J., Lax I., and Lemmon M A. (1995) Regulation of growth factor activation by proteoglycans What is the role of the low affinity receptors? Cell 83, 367–360

    Article  Google Scholar 

  64. Kan M., Wang F., Xu J., Crabb J. W., Hou J., and McKeehan W. L. (1993) An essentral heparm-binding domain in the frbroblast growth factor receptor kinase. Science 259, 1918–1921

    Article  PubMed  CAS  Google Scholar 

  65. Zhu X., Hsu B. T., and Rees D. C (1993) Structural studies of the anti-ulcer drug sucrose octasulfate bound to acidic frbroblast growth factor receptor. Structure 1, 27–34

    Article  PubMed  CAS  Google Scholar 

  66. Faham S, Hrleman R. E., Fromm J R., Lmhardt R. J., and Rees D. C. (1996) Heparin structure and interactions with basic frbroblast growth factor. Science 271, 1116–1120

    Article  PubMed  CAS  Google Scholar 

  67. Lemmon M A, Bu Z, Ladbury J. E., Pmchasr D., Zhou M., Lax I., Engelman D M, and Schlessinger J (1997) Two EGF molecules contribute additively to stabilization of the EGFR dimer. EMBO J 16, 28l–294.

    Article  Google Scholar 

  68. Lax I, Mitra A. K., Ravera C., Hurwitz D R, Rubmstem M, Ullrrch A, Stroud R M, and Schlessinger J (1991) Eprdermal growth factor (EGF) induces oligomerization of soluble, extracellular, ligand-binding domain of EGF receptor. J Biol Chem 266, 13,828–13,833.

    PubMed  CAS  Google Scholar 

  69. Gunther N., Beizel C., and Weber W. (1990) The secreted form of the epidermal growth factor receptor Characterization and crystallization of the receptor-ligand complex J Biol Chem 265, 22,082–22,085

    PubMed  CAS  Google Scholar 

  70. Weber W., Bertics P. J., and Gill G. N. (1984) Immunoaffinity purtfication of the epidermal growth factor receptor. Stoinhiometry of binding and kinetics of self-phosphorylation. J Biol Chem 259, 14,631–14,636.

    PubMed  CAS  Google Scholar 

  71. Sherrill J M and Kyte J (1996) Activation of epidermal growth factor receptor by epidermal growth factor Biochemistry 35,.5705–5718

    Article  PubMed  Google Scholar 

  72. Lax I., Burgess W. H., Bellot F, Ullrtch A., Schlessinger J., and Givol D (1988) Localization of a maJor receptor-binding domain for eptdermal growth factor by affinity labeling Mol Cell Biol 8, 1831–1834

    PubMed  CAS  Google Scholar 

  73. Lax I., Bellot F., Howk R., Ullrmh A., Gtvol D., and Schlessinger J (1989) Functional analysis of the ligand binding site of EGF-receptor utiling chicken/ human receptor molecules. EMBO J 8, 421–427

    PubMed  CAS  Google Scholar 

  74. Woltjer R. L, Lukas T. L., and Staros J. V. (1992) Direct identification of residues of the eptdermal growth factor receptor in close proximity to the ammo terminus of bound eptdermal growth factor. Proc Natl Acad Sci USA 89, 7801–7805.

    Article  PubMed  CAS  Google Scholar 

  75. Kohda D., Odaka M., Lax I., Kawasaki H., Suzuki K, Ullrtch A., Schlessinger J., and Inagaki F. (1993) A 40-kDa epidermal growth factor/transforming growth factor α-binding domain produced by limited proteolysis of the extracellular domain of the epidermal growth factor receptor J Biol Chem 268, 1976–1981

    PubMed  CAS  Google Scholar 

  76. Tanigucht T. (1995) Cytokme signaling through nonreceptor protein tyrosme kinases. Science 268, 25l–255.

    Google Scholar 

  77. Honegger A. M, Schintdt A., Ullrtch A., and Schlessinger J. (1990) Evidence for epidermal growth factor (EGF)-induced intermolecular autophosphorylation of the EGF receptors in living cells. Mel Cell Biol 10, 4035–4044.

    CAS  Google Scholar 

  78. Hubbard S. R, Wet L., Ellis L., and Hendrtckson W. A. (1994) Crystal structure of the tyrosme kinase domain of the human insulin receptor Nature 372, 746–754

    Article  PubMed  CAS  Google Scholar 

  79. Pawson T. (1995) Protein modules and signaling networks Nature 373, 573–580.

    Article  PubMed  CAS  Google Scholar 

  80. Claesson-Welsh L. (1994) Platelet-dertved growth factor receptor signals. J Biol Chem 269, 32,023–32,026.

    PubMed  CAS  Google Scholar 

  81. Kanakaraj P., Raj S, Khan S. A., and Btshayee S. (1991) Ltgand-induced interaction between a-and α-type platelet-derived growth factor (PDGF) receptors’ Role of receptor heterodimers in kinase activation. Biochemistry 30, 1761–1767

    Article  PubMed  CAS  Google Scholar 

  82. Rupp E, Siegbahn A., Ronnstrand L., Wernstedt C., Claesson-Welsh L, and Heldm C-H (1994) A unique autophosphorylation site in the platelet-derived growth factor α receptor from a heterodimeric receptor complex Eur J Biochem 225, 29–41

    Article  PubMed  CAS  Google Scholar 

  83. King C R, Borrello I, Bellot F, Comoglio P., and Schlessinger J. (1988) EGF binding to its receptor trtggers a rapid tyrosme phosphorylation of the erbB2 protein in the mammary tumor cell line SKBR-3. EMBO J 7, 1647–1651

    PubMed  CAS  Google Scholar 

  84. Stern D. F and Kamps M P. (1988) EGF-stimulated tyrosme phosphorylation of p1 85new A potential model for receptor interactions EMBO J 7, 995–1001

    PubMed  CAS  Google Scholar 

  85. Sprvak-Krotzman T, Rotin D., Pmchasr D., Ullrtch A., Schlessinger J, and Lax I. (1992) Heterodimerization of c-erbB2 with different eptdermal growth factor receptor mutants ehcrts stimulatory or mhtbrtory responses. J Biol. Chem 267, 8056–8063.

    Google Scholar 

  86. Wada T., Qian X., and Greene M I (1990) Intermolecular assoctatron of the p185new protein and EGF modulates EGF receptor function. Cell 61, 1339–1347.

    Article  PubMed  CAS  Google Scholar 

  87. Soltoff S. P., Carraway K L, Prrgent S A, Gulhck W. G., and Cantley L C (1994) ErbB3 is involved in activation of phosphatidylinosrtol 3-kinase by epidermal growth factor Mol Cell Biol 14, 3550–3558.

    PubMed  CAS  Google Scholar 

  88. Reese D. J II, van Raaij T M, Plowman G D, Andrews G. C, and Stern D F. (1995) The cellular response to neuregulins IS governed by complex interactions of the erbB receptor family. Mel Cell Biol 15, 5770–5776.

    Google Scholar 

  89. Riese D. J II, Bermingham Y., van Raatj T. M, Buckley S, Plowman G D, and Stern D. F. (1996) Betacellulin activates the eptdermal growth factor and erbB4, and induces cellular response patterns distinct from those stimulated by eprdermal growth factor of neuregulin β Oncogene 12, 345–353

    PubMed  CAS  Google Scholar 

  90. Beerh R. R. and Hynes N. E. (1996) Eptdermal growth factor-related peptrdes activate distinct subsets of erbB receptors and differ in their brologrcal actrvmes. J Biol. Chem 271, 6071–6076

    Article  Google Scholar 

  91. Pinkas-Kramarski R, Soussan L, Waterman H., Levkowrtz G, Alroy I, Klapper L, Lavi S., Seger R., Raizkm B. J., Sela M, and Yarder Y. (1996) Diversification of Neu drfferentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J 15, 2452–2467.

    PubMed  CAS  Google Scholar 

  92. Nicholls A. and Hoing B J (1991) A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson-Bolizmann equation. J Comp Chem. 12, 11,715–11,718

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Lemmon, M.A., Schlessinger, J. (1998). Transmembrane Signaling by Receptor Oligomerization. In: Bar-Sagi, D. (eds) Transmembrane Signaling Protocols. Methods In Molecular Biology™, vol 84. Humana Press. https://doi.org/10.1385/0-89603-488-7:49

Download citation

  • DOI: https://doi.org/10.1385/0-89603-488-7:49

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-488-4

  • Online ISBN: 978-1-59259-568-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics