Skip to main content

Immunobiosensors Based on Evanescent Wave Excitation

  • Protocol
Affinity Biosensors

Part of the book series: Methods in Biotechnology ((MIBT,volume 7))

Abstract

Evanescent wave immunobiosensors use antibodies immobilized at the surface of a waveguide to form a sensing device. Fluorescence-based evanescent wave biosensors form a fluorescent complex at the surface of the waveguide when the antigen of interest is present (e.g., a sandwich assay or direct binding of a fluorescent analyte) or alternatively, the nonfluorescent analyte may compete with a fluorescent analog of the analyte for binding, as in a competitive immunoassay format. Light propagating through the waveguide extends a short distance into the surrounding medium and excites the immobilized fluorophore. The waveguide also collects the emitted fluorescence and carries this light to a photodetector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Golden, J. P., Anderson, G. P., Ogert, R. A., Breslm, K. A., and Ligler, F. S. (1992) An evanescent wave fiber optic biosensor: challenges for real world sensing. SPIE Proc 1796, 2–8.

    Article  Google Scholar 

  2. Thompson, R. B. (1991) Fluorescence-based fiber-optic sensors, in Topics in Fluorescence Spectroscopy, vol 2 Principles (Lakowicz, J. R., ed.), Plenum, New York, pp. 345–365.

    Google Scholar 

  3. Thompson, R. and Ligler, F. S. (1991) Chemistry and technology of evanescent wave biosensors, in Biosensors with Fiberoptics (Wingard, L. B. and Wise, D. L.), Humana, Totowa, NJ, pp 111–138

    Google Scholar 

  4. Axelrod, D. (1989) Total internal reflection fluorescence microscopy. Meth. Cell Biol. 30, 245–270.

    Article  CAS  Google Scholar 

  5. Kronick, M. N. and Little, W. A. (1975) A new immunoassay based on fluorescence excitation by internal reflection spectroscopy. J Immunol. Meth. 8, 235–240.

    Article  CAS  Google Scholar 

  6. Hirshfield, T. E. and Block, M. J. (1984) Fluorescent immunoassay employing optical fiber in capillary tube. U.S. Patent No. 4,447,546

    Google Scholar 

  7. Ligler, F. S., Golden, J. P., Shriver-Lake, L. C, Ogert, R. A., Wijesuria, D., and Anderson, G. P. (1993) Fiber-optic biosensor for the detection of hazardous materials. Immunomethods 3, 122–127

    Article  CAS  Google Scholar 

  8. Shriver-Lake, L. C., Ogert, R. A., and Ligler, F. S. (1993) A fiber-optic evanescent-wave immunosensor for large molecules. Sensors Actuators 11, 239–243.

    Article  Google Scholar 

  9. Shriver-Lake, L. C., Breslin, K. A., Charles, P. T., Conrad, D. W., Golden, J. P., and Ligler, F. S. (1995) Detection of TNT in water using an evanescent wave fiber-optic biosensor. Anal Chem 34, 2431–2435.

    Article  Google Scholar 

  10. Walczak, I. M., Love, W. F., Cook, T. A., and Slovacek, R. E. (1992) The application of evanescent wave sensing to a high-sensitivity fluoroimmunoassay. Biosensors BioeJectron. 7, 39–48

    Article  CAS  Google Scholar 

  11. Oroszlan, P., Thommen, C., Wehrli, M, Duveneck, G., and Ehrat, M. (1993) Automated optical sensing system for biochemical assays: a challenge for ELISA? Anal. Meth. Instrument. 1, 43–51.

    CAS  Google Scholar 

  12. Christensen, D., Johannson, T., and Petelenz, D. (1994) Biosensor development at the University of Utah. IEEE Engineer Med Biol. 13, 388–395.

    Article  Google Scholar 

  13. Reichert, W. M., Ives, J. T., Suci, P. A., and Hlady, V. (1987) Excitation of fluorescent emission from solutions at the surface of polymer thin-film waveguides, an integrated optics technique for the sensing of fluorescence at the polymer/solution interface. Appl. Spec 41, 636–640.

    Article  CAS  Google Scholar 

  14. Anderson, G. P., Golden, J. P., and Ligler, F. S(1993) A fiber optic biosensorcombination tapered fibers designed for improved signal acquistion. Biosensors Bioelectron. 8, 249–256.

    Article  Google Scholar 

  15. Golden, J. P., Anderson, G. P., Rabbany, S. Y., and Ligler, F. S. (1994) An evanescent wave biosensor—part II: fluorescent signal acquisition from tapered fiber optic probes. IEEE Trans. Biomed Engineer. 41, 585–591.

    Article  CAS  Google Scholar 

  16. Bhatia, S. K., Shriver-Lake, L. C., Prior, K. J., Georger, J. H., Calvert, J. M., Bredehorst, R., and Ligler, F. S. (1989) Use of thiol-terminal silanes and heterobifunctional crosshnkers for immobilization of antibodies on silica surfaces Anal Biochem. 178, 408–413.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Wadkins, R.M., Ligler, F.S. (1998). Immunobiosensors Based on Evanescent Wave Excitation. In: Rogers, K.R., Mulchandani, A. (eds) Affinity Biosensors. Methods in Biotechnology, vol 7. Humana Press. https://doi.org/10.1385/0-89603-539-5:77

Download citation

  • DOI: https://doi.org/10.1385/0-89603-539-5:77

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-539-3

  • Online ISBN: 978-1-59259-485-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics