Skip to main content

Use of Kinase Inhibitors to Dissect Signaling Pathways

  • Protocol
Stress Response

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 99))

Abstract

Protein kinases form one of the largest families of proteins encoded in the human genome, and these enzymes have critical roles in controlling all cellular processes. The abnormal phosphorylation state of proteins is the cause or consequence of many diseases and, for this reason, protein kinases have become attractive drug targets for the treatment of cancer, diabetes, hypertension, inflammation, and other disorders (13).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ishii H., Jirousek M. R., Koya D., Takagi C., Xia P., Clermont A., Lermont A., Bursell S. E., Kern T. S., Ballas L. M., Heath W. F., Stramm L. E., Feener E. P., and King G. L. (1996) Amelioration of vascular dysfunctions in diabetic rats by an oral PKCβ inhibitor. Science 272, 728–731.

    Article  PubMed  CAS  Google Scholar 

  2. Uehata M., Ishizaki T., Satoh H., Ono T., Kawahara T., Morishita T., Tamakawa H., Yamagami K., Inui J., Maekawa M., and Narumiya S. (1997) Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990–994.

    Article  PubMed  CAS  Google Scholar 

  3. Badger A. M., Bradbeer J. N., Votta B., Lee J. C., Adams J. L., and Griswold D. E. (1996) Phamacological profile of SB 203580, a selective inhibitor of cytokine suppessive binding protein/p38 kinase, in animal models of arthritis, bone resorption, endotoxin shock and immune function. J. Pharmacol. Exp. Ther. 279, 1453–1461.

    PubMed  CAS  Google Scholar 

  4. Cross D. A. E., Alessi D. R., Cohen P., Andjelkovic M., and Hemmings B. A. (1995) Inhibition of glycogen-synthase kinase-3 by insulin is mediated by protein kinase B. Nature 378, 785–789.

    Article  PubMed  CAS  Google Scholar 

  5. Lee J. C. and Young P. R. (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372, 739–746.

    Article  PubMed  CAS  Google Scholar 

  6. Cuenda A., Rouse J., Doza Y. N., Meier R., Young P. R., Cohen P., and Lee J. C. (1995) SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett. 364, 229–233.

    Article  PubMed  CAS  Google Scholar 

  7. Goedert M., Cuenda A., Craxton M., Jakes R., and Cohen P. (1997) Activation of the novel stress-activated protein kinase SAPK4 by cytokines and cellular stresses is mediated by SKK3/MKK6; comparison of its substrate specificity with that of other SAP kinases. EMBO J. 16, 3563–3571.

    Article  PubMed  CAS  Google Scholar 

  8. Eyers P. A., Craxton M., Morrice N., Cohen P., and Goedert M. (1998) Conversion of SB 203580-insensitive MAP kinase family members to drug-sensitive forms by a single amino-acid substitution. Chem. Biol. 5, 321–328.

    Article  PubMed  CAS  Google Scholar 

  9. Cohen P. (1997) The search for physiological substrates of MAP and SAP kinases in mammalian cells. Trends Cell Biol. 7, 353–361.

    Article  PubMed  CAS  Google Scholar 

  10. Deak M., Clifton A. D., Lucocq J. M., and Alessi D. R. (1998) Mitogen-and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may itself mediate activation of CREB. EMBO J. 17, 4426–4441.

    Article  PubMed  CAS  Google Scholar 

  11. New L., Jiang Y., Zhao M., Liu K., Zhu W., Flood L. J., Kato Y., Parry G. C. N., and Han J. H. (1998) PRAK, a novel protein kinase regulated by the p38 MAP kinase. EMBO J. 17, 3372–3384.

    Article  PubMed  CAS  Google Scholar 

  12. Laemmli U. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277, 680–685.

    Article  Google Scholar 

  13. Alessi D. R., Cuenda A., Cohen P., Dudley D. T., and Saltiel A. R. (1995) PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase. in vitro and in vivo. J. Biol. Chem. 270, 27,489–27,494.

    CAS  Google Scholar 

  14. Ballou L. M., Luther H., and Thomas G. (1991) MAP2 kinase and 70K-S6 kinase lie on distinct signalling pathways. Nature 349, 348–350.

    Article  PubMed  CAS  Google Scholar 

  15. Price D. J., Grove J. R., Clavo V., Avruch J., and Bierer B. E. (1992) Rapamycin-induced inhibition of the 70-kilodalton S6 protein-kinase. Science 257, 973–977.

    Article  PubMed  CAS  Google Scholar 

  16. Kuo C. J., Chung J., Fiorentino D. F., Flanagan W. M., Blenis J., and Crabtree G. R. (1992) Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature 358, 70–73.

    Article  PubMed  CAS  Google Scholar 

  17. Ui M., Okada T., Hazeki K., and Hazeki O. (1995) Wortmannin as a unique probe for an intracellular signalling protein, phosphoinositide 3-kinase. Trends Biochem. Sci. 20, 303–307.

    Article  PubMed  CAS  Google Scholar 

  18. Vlahos C. J., Matter W. F., Hui K. Y., and Brown R. F. (1994) A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem. 269, 5241–5248.

    PubMed  CAS  Google Scholar 

  19. Shepherd P. R., Withers D. J., and Siddle K. (1998) Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem. J. 333, 471–490.

    PubMed  CAS  Google Scholar 

  20. Wymann M. P., BulgarelliLeva G., Zvelebil M. J., Pirola L., Vanhaesebroeck B., Waterfield M. D., and Panayotou G. (1996) Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction. Mol. Cell. Biol. 16, 1722–1733.

    PubMed  CAS  Google Scholar 

  21. Brunn G. J., Williams J., Sabers C., Wiederrecht G., Lawrence J. C. Jr., and Abraham R. T. (1996) Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY 294002. EMBO J. 15, 5256–5267.

    PubMed  CAS  Google Scholar 

  22. Davis P. D., Hill C. H., Keech E., Lawton G., Nixon J. S., Sedgwick A. D., Wadsworth J., Westmacott D., and Wilkinson S. E. (1989) Potent selective inhibitors of protein kinase-C. FEBS Lett. 259, 61–63.

    Article  PubMed  CAS  Google Scholar 

  23. Toullec D., Pianetti P., Coste H., Bellevergue P., Grandperret T., Ajakane M., Baudet V., Boissin P., Boursier E., Loriolle F., Duhamel L., Charon D., and Kirilovsky J. (1991) The bisindolylmaleimide GF-109203X is a potent and selective inhibitor of protein kinase C. J. Biol. Chem. 266, 15,771–15,781.

    PubMed  CAS  Google Scholar 

  24. Bradshaw D., Hill C. H., Nixon J. S., and Wilkinson S. E. (1993) Therapeutic potential of Protein kinase C inhibitors. Agents Actions 38, 135–147.

    Article  PubMed  CAS  Google Scholar 

  25. Nixon J. S., Bishop J., Bradshaw D., Davis P. D., Hill C. H., Elliott L. H., Kumar H, Lawton G., Lewis E. J., Mulqueen M., Westmacott D., Wadworth J., and Wilkinson S. E. (1992) The design and biological properties of potent and selective inhibitors of Protein kinase C. Biochem. Soc. Trans 20, 419–425.

    PubMed  CAS  Google Scholar 

  26. Alessi D. R. (1997) The protein kinase C inhibitors Ro 318220 and GF 109203X are equally potent inhibitors of MAPKAP kinase-1β (Rsk-2) and p70 S6 kinase. FEBS Lett. 402, 121–123.

    Article  PubMed  CAS  Google Scholar 

  27. Hall-Jackson C. A., Goedert M., Hedge P., and Cohen P. (1999) Effect of SB 203580 on the activity of c-Raf in vitro and in vivo. Oncogene 18, 2047–2054.

    Article  PubMed  CAS  Google Scholar 

  28. Reiners J. J., Lee J. Y. Jr., Clift R. E., Dudley D. T., and Myrand S. P. (1998) PD98059 is an equipotent antagonist of the aryl hydrocarbon receptor and inhibitor of mitogen-activated protein kinase kinase. Mol. Pharmacol. 53, 438–445.

    PubMed  CAS  Google Scholar 

  29. DiComo C. J. and Arndt K. T. (1996) Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev. 10, 1904–1916.

    Article  CAS  Google Scholar 

  30. Nakanishi S., Catt K. J., and Balla T. (1995) A wortmannin-sensitive phosphatidylinositol 4-kinase that regulates hormone-sensitive pools of inositolphospholipids. Proc. Natl. Acad. Sci. USA 92, 5317–5321.

    Article  PubMed  CAS  Google Scholar 

  31. Cross M. J., Stewart A., Hodgkin M. N., Kerr D. J., and Wakelam M. J. (1995) Wormannin and its structural analog demethoxyviridin inhibit stimulated phospholipase A2 activity in swiss 3T3 cells-Wortmannin is not a specific inhibitor of phosphatidylinositol 3-kinase. J. Biol. Chem. 270, 25,352–25,355.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Cuenda, A., Alessi, D.R. (2000). Use of Kinase Inhibitors to Dissect Signaling Pathways. In: Walker, J.M., Keyse, S.M. (eds) Stress Response. Methods in Molecular Biology™, vol 99. Humana Press. https://doi.org/10.1385/1-59259-054-3:161

Download citation

  • DOI: https://doi.org/10.1385/1-59259-054-3:161

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-611-6

  • Online ISBN: 978-1-59259-054-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics