Skip to main content

Pulsed-Field Capillary Electrophoresis Separation of Large DNA Fragments

  • Protocol
Capillary Electrophoresis of Nucleic Acids

Abstract

Field-inversion capillary electrophoresis (FICE) provides many of the same benefits as the more familiar, field-inversion gel electrophoresis (FIGE). In the capillary format, field inversion allows size separation of linear dsDNA into the megabase region. Whereas FIGE separation of megabase pair (Mb) DNA takes 24 h or more, the most rapid FICE separations are complete within 4 min (1,2). As with any capillary electroseparation, the technique is rapid and provides high resolution, but is analytical scale only. Preparative scale use of capillary electrophoresis (CE) is not very practical, although apparatus capable of the collection of CE fractions have been developed (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim Y. and Morris M. D. (1996) Ultrafast high resolution separation of large DNA fragments by pulsed-field capillary electrophoresis. Electrophoresis 17, 152–160.

    Article  PubMed  CAS  Google Scholar 

  2. Heller C., Magnúsdóttir S., and Viovy J.-L. (2001) Robust field inversion capillary electrophoretic separation of long DNA fragments, in Capillary Electrophoresis of Nucleic Acids, Vol. 1 (Mitchelson K. R. and Cheng J., eds.), Humana Press, Totowa, NJ, pp. 293–305.

    Google Scholar 

  3. Magnúsdóttir S., Heller C., Sergot P., and Viovy J.-L. (2001) Collection of capillary electrophoresis fractions on a moving membrane, in Capillary Electrophoresis of Nucleic Acids, Vol. 1 (Mitchelson K. R. and Cheng J., eds.), Humana Press, Totowa, NJ, pp. 323–331.

    Google Scholar 

  4. Ulfelder K. J. and McCord B. R. (1997) Separation of DNA by capillary electrophoresis, in Handbook of Capillary Electrophoresis, 2nd ed. (Landers J. P., ed.), CRC Press, Boca Raton, pp. 347–378.

    Google Scholar 

  5. Grossman P. D. (1992) Factors affecting the performance of capillary electrophoresis separations: Joule heating, electroosmosis, and zone dispersion, in Capillary Electrophoresis: Theory and Practice (Grossman P. D. and Colburn J. C., ed.), Academic Press, San Diego, pp. 3–43.

    Google Scholar 

  6. Viovy J.-L. and Duke T. (1993) DNA electrophoresis in polymer solutions: Ogston sieving, reptation, and constraint release. Biopolymers 24, 1573–1593.

    Google Scholar 

  7. Barron A. E., Soane D. S., and Blanch H. W. (1993) Capillary electrophoresis of DNA in uncross-linked polymer solutions. J. Chromatogr. A 652, 3–16.

    Article  PubMed  CAS  Google Scholar 

  8. Barron A. E., Blanch H. W., and Soane D. S. (1994) A transient entanglement coupling mechanism for DNA separation by capillary electrophoresis in ultradilute polymer solutions. Electrophoresis 15, 597–615.

    Article  PubMed  CAS  Google Scholar 

  9. Barron A. E., Sunada W. M., and Blanch H. W. (1996) The effects of polymer properties on DNA separations by capillary electrophoresis in uncross-linked polymer solutions. Electrophoresis 17, 744–757.

    Article  PubMed  CAS  Google Scholar 

  10. Hubert S. J., Slater G. W., and Viovy J.-L. (1996) Theory of capillary electrophoretic separation of DNA using ultradilute polymer solutions. Macromolecules 29, 1006–1009.

    Article  CAS  Google Scholar 

  11. Lumpkin O. J., Dejardin P., and Zimm B. H. (1985) Theory of gel electrophoresis of DNA. Biopolymers 24, 1573–1593.

    Article  PubMed  CAS  Google Scholar 

  12. Slater G. W. and Noolandi J. (1985) New biased-reptation model for charged polymers. Phys. Rev. Lett. 55, 1579–1583.

    Article  PubMed  CAS  Google Scholar 

  13. Slater G. W. and Noolandi J. (1986) On the reptation theory of gel electrophoresis. Biopolymers 25, 431–454.

    Article  CAS  Google Scholar 

  14. Duke T. (1993) Molecular mechanisms of DNA electrophoresis. Int. J. Genome Res. 1, 227–247.

    CAS  Google Scholar 

  15. Smith S. B., Aldridge P. K., and Callis J. B. (1989) Observation of individual DNA molecules undergoing gel electrophoresis. Science 243, 203–206.

    Article  PubMed  CAS  Google Scholar 

  16. Oana H., Masubuchi Y., Matsumoto M., Doi M., Matsuzawa Y., and Yoshikawa K. (1994) Periodic motion of large DNA molecules during steady field gel electrophoresis. Macromolecules 27, 6061–6067.

    Article  CAS  Google Scholar 

  17. Shi X., Hammond R. W., and Morris M. D. (1995) DNA conformational dynamics in polymer solutions above and below the entanglement limit. Anal. Chem. 67, 1132–1138.

    Article  PubMed  CAS  Google Scholar 

  18. Carlsson C., Larsson A., Jonsson M., and Nordćn B. (1995) Dancing DNA in capillary solution electrophoresis. J. Am. Chem. Soc. 117, 3871–3872.

    Article  CAS  Google Scholar 

  19. Shi X., Hammond R. W., and Morris M. D. (1995) Dynamics of DNA during pulsed field electrophoresis in entangled and dilute polymer solutions. Anal. Chem. 67, 3219–3222.

    Article  PubMed  CAS  Google Scholar 

  20. Hammond R. W., Shi X., and Morris M. D. (1996) Dynamics of T2 DNA during capillary electrophoresis in entangled and ultradilute hydroxyethyl cellulose solutions. J. Microcolumn Sep. 8, 201–210.

    Article  CAS  Google Scholar 

  21. Masubuchi Y., Oana H., Matsumoto M., Doi M., and Yoshikawa K. (1996) Conformational dynamics of DNA during biased sinusoidal field gel electrophoresis. Electrophoresis 17, 1065–1074.

    Article  PubMed  CAS  Google Scholar 

  22. Duke T. A. J. (1989) Tube model of field-inversion electrophoresis. Phys. Rev. Lett. 62, 2877–2880.

    Article  PubMed  CAS  Google Scholar 

  23. Deutsch J. M. (1990) Theoretical aspects of electrophoresis, in Electrophoresis of Large DNA Molecules: Theory and Applications (Lai E. and Birren B. W., eds.), Cold Spring Harbor Laboratory Press, Plainview, NY, pp. 81–99.

    Google Scholar 

  24. Schwartz D. C. and Cantor C. R. (1984) Separation of yeast chromosome-size DNAs by pulsed field gradient gel electrophoresis. Cell 37, 67–75.

    Article  PubMed  CAS  Google Scholar 

  25. Sudor J. and Novotny M. V. (1994) Separation of large DNA fragments by capillary electrophoresis under pulsed-field conditions. Anal. Chem. 66, 2446–2450.

    Article  PubMed  CAS  Google Scholar 

  26. Sudor J. and Novotny M. V. (1995) The mobility minima in pulsed-field capillary electrophoresis of large DNA. Nucleic Acids Res. 23, 2538–2543.

    Article  PubMed  CAS  Google Scholar 

  27. Viovy J.-L. (1987) Pulsed electrophoresis: some implications of reptation theories. Biopolymers 26, 1929–1940.

    Article  CAS  Google Scholar 

  28. Viovy J.-L. (1989) Reptation-breathing theory of pulsed electrophoresis: Dynamic regimes, antiresonance and symmetry breakdown effects. Electrophoresis 10, 429–441.

    Article  PubMed  CAS  Google Scholar 

  29. Schwinefus J. J. and Morris M. D. (1998) Periodicity of λ DNA motions during field inversion electrophoresis in dilute hydroxyethyl cellulose visualized by high-speed video fluorescence microscopy. Macromolecules 32, 3678–3684.

    Article  Google Scholar 

  30. Weiss G. H., Sokoloff H., Zakharov S. F., and Chrambach A. (1996) Interpretation of electrophoretic band shapes by a partition chromatographic model. Electrophoresis 17, 1325–1332.

    Article  PubMed  CAS  Google Scholar 

  31. Yarmola E., Calabrese P. P., Chrambach A., and Weiss G. H. (1997) Interaction with the matrix: the dominant factor in macromolecular band spreading in gel electrophoresis. J. Phys. Chem. B 101, 2381–2387.

    Article  CAS  Google Scholar 

  32. Starkweather M. E., Muthukumar M., and Hoagland D. A. (1998) Single chain entanglement: a monte carlo simulation of dilute solution capillary electrophoresis. Macromolecules 31, 5495–5501.

    Article  CAS  Google Scholar 

  33. Kim Y. and Morris M. D. (1994) Pulsed field capillary electrophoresis of multikilobase length nucleic acids in dilute methyl cellulose solutions. Anal. Chem. 66, 3081–3085.

    Article  PubMed  CAS  Google Scholar 

  34. Kim Y. and Morris M. D. (1995) Rapid pulsed field capillary electrophoretic separation of megabase nucleic acids. Anal. Chem. 67, 784–786.

    Article  PubMed  CAS  Google Scholar 

  35. Schwinefus J. J. and Morris M. D. (1998) Band broadening during DC and field inversion capillary electrophoresis of λ DNA in dilute hydroxyethyl cellulose solutions. Analyst 123, 1481–1485.

    Article  PubMed  CAS  Google Scholar 

  36. Kim Y. S. and Yeung E. S. (1997) Separation of DNA sequencing fragments up to 1000 bases by using poly(ethylene oxide)-filled capillary electrophoresis. J. Chromatogr. A 781, 315–325.

    Article  PubMed  CAS  Google Scholar 

  37. Kim Y. S. and Yeung E. S. (1997) DNA sequencing with pulsed-field capillary electrophoresis in poly(ethylene oxide) matrix. Electrophoresis 18, 2901–2908.

    Article  PubMed  CAS  Google Scholar 

  38. Navin M. J., Rapp T. L., and Morris M. D. (1994) Variable frequency modulation in DNA separations using field inversion capillary gel electrophoresis. Anal. Chem. 66, 1179–1182.

    Article  PubMed  CAS  Google Scholar 

  39. Heiger D. N., Cohen A. S., and Karger B. L. (1990) Separation of DNA restriction fragments by high performance capillary electrophoresis with low and zero crosslinked polyacrylamide using continuous and pulsed electric fields. J. Chromatogr. 516, 33–48.

    Article  PubMed  CAS  Google Scholar 

  40. Demana T., Lanan M., and Morris M. D. (1991) Improved separation of nucleic acids with analyte velocity modulation capillary electrophoresis. Anal. Chem. 63, 2795–2797.

    Article  PubMed  CAS  Google Scholar 

  41. Chen N., Wu L., Palm A., Srichaiyo T., and Hjertén S. (1996) High-performance field inversion capillary electrophoresis of 0.1–23 kbp DNA fragments with low-gelling, replaceable agarose gels. Electrophoresis 17, 1443–1450.

    Article  PubMed  CAS  Google Scholar 

  42. Heller C., Pakleza C., and Viovy J.-L. (1995) DNA separation with field inversion capillary electrophoresis. Electrophoresis 16, 1423–1428.

    Article  PubMed  CAS  Google Scholar 

  43. Sudor J. and Novotny M. (1993) Electromigration behavior of polysaccharides in capillary electrophoresis under pulsed-field conditions. Proc. Natl. Acad. Sci. USA 90, 9451–9455.

    Article  PubMed  CAS  Google Scholar 

  44. Oda R. P. and Landers J. P. (1997) Introduction to capillary electrophoresis, in Handbook of Capillary Electrophoresis, 2nd ed. (Landers J.P., ed.), CRC Press, Boca Raton, pp. 1–47.

    Google Scholar 

  45. Morris M. D., Kim Y., and Hammond R. W. (1996) Pulsed field electrophoresis of nucleic acids: ultrafast separations in ultrashort capillaries. Proc. SPIE 2680, 219–224.

    Article  CAS  Google Scholar 

  46. Gobie W. A. and Ivory C. F. (1990) Thermal model of capillary electrophoresis and a method for counteracting band broadening. J. Chromatogr. 516, 191–210.

    Article  CAS  Google Scholar 

  47. Davis K. L., Liu K.-L., Lanan M., and Morris M. D. (1993) Spatially resolved temperature measurements in electrophoresis capillaries by Raman thermometry. Anal. Chem. 65, 293–298.

    Article  PubMed  CAS  Google Scholar 

  48. Liu K.-L., Davis K. L., and Morris M. D. (1994) Raman spectroscopic measurement of spatial and temporal gradients in operating electrophoresis capillaries. Anal. Chem. 66, 3744–3750.

    Article  PubMed  CAS  Google Scholar 

  49. Nelson R. J., Paulus A., Cohen A. S., Guttman A., and Karger B. L. (1989) Use of Peltier thermoelectric devices to control column temperature in high performance capillary electrophoresis. J. Chromatogr. 480, 111–127.

    Article  CAS  Google Scholar 

  50. Rapp T. L. and Morris M. D. (1996) An aluminum heat sink and radiator for electrophoresis capillaries. Anal. Chem. 68, 4446–4450.

    Article  PubMed  CAS  Google Scholar 

  51. Heiger D. N., Carson S. M., Cohen A. S., and Karger B. L. (1992) Wave form fidelity in pulsed field capillary electrophoresis. Anal. Chem. 64, 192–199.

    Article  CAS  Google Scholar 

  52. Mitnik L., Heller C., Prost J., and Viovy J.-L. (1995) Segregation in DNA solutions induced by electric fields. Science 267, 219–222.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Morris, M.D., Schwinefus, J.J., de Carmejane, O. (2001). Pulsed-Field Capillary Electrophoresis Separation of Large DNA Fragments. In: Mitchelson, K.R., Cheng, J. (eds) Capillary Electrophoresis of Nucleic Acids. Methods in Molecular Biology, vol 162. Humana Press. https://doi.org/10.1385/1-59259-055-1:307

Download citation

  • DOI: https://doi.org/10.1385/1-59259-055-1:307

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-779-3

  • Online ISBN: 978-1-59259-055-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics