Skip to main content

The Complement System:An Overview

  • Protocol
Complement Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 150))

Abstract

The complement (C) system consists of a group of 12 soluble plasma proteins that interact with one another in two distinct enzymatic activation cascades (the classical and alternative pathways) and in the nonenzymatic assembly of a cytolytic complex (the membrane attack pathway) (Fig. 1; Table 1). A third activation pathway, termed the lectin pathway, has recently been described (1,2). Control of these enzymatic cascades, essential to prevent rapid consumption of C in vivo, is provided by 10 or more plasma and membrane -bound inhibitory proteins acting at multiple stages of the system. C plays a central role in innate immune defense, which provides a system for the rapid destruction of a wide range of invading microorganisms.

The complement system and its control. The constituent pathways of the C system and the component proteins are shown. Enzymatic cleavages are represented by thick arrows. The lectin pathway differs from the CP only in that the MBP-MASP complex replaces the Cl complex. Regulators act to inhibit either the enzymes of the activation pathways (activated Cl, C3 convertases, C5 convertases) or assembly of the MAC.

Table 1 The Component Proteins of the Complement System

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turner M. W. (1991) Deficiency of mannan binding protein—a new complement deficiency syndrome. Clinic. Experiment. Immunol. 86, 53–56.

    Article  CAS  Google Scholar 

  2. Reid K. B. and Turner M. W. (1994) Mammalian lectins in activation and clearance mechanisms involving the complement system. Springer Sent. Immunopathol 15, 307–326.

    Article  CAS  Google Scholar 

  3. Loos M. (1988) “Classical” pathway of activation, in The Complement System (Rother K. and Till G. O., eds.), Springer, Berlin, pp. 136–154.

    Google Scholar 

  4. Reid K. B. (1986) Activation and control of the complement system. Essays in Biochem. 22, 27–68.

    CAS  Google Scholar 

  5. Reid K. B. and Day A. J. (1989) Structure-function relationships of the complement components. Immunol. Today 10, 177–180.

    Article  PubMed  CAS  Google Scholar 

  6. Schreiber R. D. and Muller-Eberhard H. J. (1974) Fourth component of human complement: description of a three polypeptide chain structure. J. Exp. Med. 140. 1324–1335.

    Article  PubMed  CAS  Google Scholar 

  7. Janatova J. and Tack B. F. (1981) Fourth component of human complement: studies of an a mine-sensitive site comprised of a thiol component. Biochemistry 20, 2394–2402.

    Article  PubMed  CAS  Google Scholar 

  8. Campbell R. D., Dunham I., and Sargent C. A. (1988) Molecular mapping of the HLA-linked complement genes and the RCA linkage group. Experiment. Clinic. Immunogenet. 5, 81–98.

    CAS  Google Scholar 

  9. Campbell R. D. (1988) The molecular genetics of components of the complement system. Baillieres Clinic. Rheumatol. 2, 547–575.

    Article  CAS  Google Scholar 

  10. Lambris J. D. (1988) The multifunctional role of C3, the third component of complement. Immunol. Today 9, 387–393.

    Article  PubMed  CAS  Google Scholar 

  11. Kozono H., Kinoshita T., Kim Y. U., Takata-Kozono Y., Tsunasawa S. Sakiyama F., et al. (1990) Localization of the covalent C3b-binding site on C4b within the complement classical pathway C5 convertase, C4b2a3b. J. Biohg. Chem. 265, 14,444–14,449.

    CAS  Google Scholar 

  12. Ebanks R. O., Jaikaran A. S., Carroll M. C, Anderson M. J., Campbell R. D., and Isenman D. E. (1992) A single arginine to tryptophan interchange at betachain residue 458 of human complement component C4 accounts for the defect in classical pathway C5 convertase activity of allotype C4A6. Implications for the location of a C5 binding site in C4. J. Immunol. 148, 2803–2811.

    PubMed  CAS  Google Scholar 

  13. Gotze O. (1986) The alternative pathway of activation, in The Complement System (Rother K. and Till G. O., eds.), Springer, Berlin, pp. 154–168.

    Google Scholar 

  14. Weiler J. M., Daha M. R., Austen K. F., and Fearon D. T. (1976) Control of the amplification convertase of complement by the plasmaproteinbetalH. Proc. Natl. Acad Sci. USA 73, 3268–3272.

    Article  PubMed  CAS  Google Scholar 

  15. Fearon D. T., Daha M. R., Weiler J. M., and Austen K. F. (1976) The natural modulation of the amplification phase of complement activation. Transplant. Rev. 32, 12–25.

    PubMed  CAS  Google Scholar 

  16. Minta J. O. and Lepow I. H. (1974) Studies on the subunit structure of human properdin. Immunochemistry 11, 361–368.

    Article  PubMed  CAS  Google Scholar 

  17. Lachmann P. J. and Hughes-Jones N. C. (1984) Initiation of complement activation. Springer Sent. ImmunopathoL 7, 143–162.

    Article  CAS  Google Scholar 

  18. Law S. K. and Dodds A. W. (1990) C3, C4 and C5: the thioester site. Biochem. Soc. Trans. 18, 1155–1159.

    PubMed  CAS  Google Scholar 

  19. Holmskov U., Malhotra R., Sim R. B., and Jensenius J. C. (1994) Collectins: collagenous C-type lectins of the innate immune defense system. Immunol. Today 67–74.

    Google Scholar 

  20. Matsuhita M. and Fujita T. (1992) Activation of the classical complement pathway by mannose-binding protein in association with a novel Cls-like serine protease. J. Exp. Med. 176, 1497–1502.

    Article  Google Scholar 

  21. Tamura N., Shimada A., and Chang S. (1972) Further evidence for immune cytolysisby antibody and the first eight components of complement. Immunology 22, 131–140.

    PubMed  CAS  Google Scholar 

  22. Davis A. E. (1988) Cl inhibitor and hereditary angioneurotic edema. Anna. Rev. Immunol. 5, 595–628.

    Article  Google Scholar 

  23. Davis A. E. (1989) Hereditary and acquired deficiencies of Cl inhibitor. Immunodef. Rev. 1, 207–226.

    PubMed  Google Scholar 

  24. Vik D. P., Munoz-Canoves P., Chaplin D. D., and Tack B. F. (1990) Factor H. Curr. Topics Microbiol. Immunol. 153, 147–162.

    CAS  Google Scholar 

  25. Gigli I., Fujita T., and Nussenzweig V. (1979) Modulation of the classical pathway C3convertaseby the plasma proteins C4 binding protein and C3b inactivator. Proc. Natl Acad. Sci. USA 76, 6596–6600.

    Article  PubMed  CAS  Google Scholar 

  26. Pillemer L., Blum L., Lepow I. H., Ross O. A., Todd E. W., and Wardlaw A. C. (1954) The properdin system and immunity. I. demonstration of a new serum protein, properdin, and its role in immune phenomena. Science 120, 279–285.

    Article  PubMed  CAS  Google Scholar 

  27. Smith C. A., Pangburn M. K., Vogel C-W., and Muller-Eberhard H. J. (1984) Molecular architecture of human properdin, a positive regulator of the alternative pathway of human complement. J. Biol. Chem. 259, 4582–4588.

    PubMed  CAS  Google Scholar 

  28. Pangburn M. K. (1986) The alternative pathway, in lmmunobiology of the complement system (Ross G. D., ed.), Academic, New York, pp. 45–62.

    Google Scholar 

  29. Lachmann P. J. (1991) The control of homologous lysis. Immunol. Today 12. 312–315.

    Article  PubMed  CAS  Google Scholar 

  30. Davies A. and Lachmann P. J. (1993) Membrane defence against complement lysis the structure and biological properties of CD59. Immunol. Res. 12, 258–275.

    Article  PubMed  CAS  Google Scholar 

  31. Andrews B. S., Shadforth M., Cunningham P., and Davis J. S. (1981) Demonstration of a Clq receptor on the surface of human endothelial cells. J. Immunol. 127, 1075–1080.

    PubMed  CAS  Google Scholar 

  32. Ghebrehiwet B. (1989) Functions associated with the Clq receptor. Behring Inst. Mitt. 84, 204–215.

    PubMed  CAS  Google Scholar 

  33. Sim R. B. and Malhotra R. (1994) Interactions of carbohydrates and lectins with complement. Biochem. Soc. Trans. 22, 106–111.

    PubMed  CAS  Google Scholar 

  34. Eggleton P., Gehebrehewit B., Sastry K. N., Coburn J. P., Zaner K. S., Reid K. B., and Tauber A. I. (1995) Identification of a gClq-binding protein (gClq-R) on the surface of human neutrophils. Subcellular localisation and binding properties in comparison with the cClq-R. J. Clin. Invest. 95, 1569–1578.

    Article  PubMed  CAS  Google Scholar 

  35. Fearon D. T. and Wong W. W. (1983) Complement ligand-receptor interactions that mediate biological responses. Ann. Rev. Immunol. 1, 243–271.

    Article  CAS  Google Scholar 

  36. Fearon D. T., Klickstein L. B., Wong W. W., Wilson J. G., Moore F. D., Jr.; Weis J. J., Weis, et al. (1989) Immunoregulatory functions of complement: structural and functional studies of complement receptor type 1 (CR1; CD35) and type 2 (CR2; CD21). Progr. Clln. Biohg. Res. 297, 211–220.

    CAS  Google Scholar 

  37. Rothlein R. and Springer T. A. (1985) Complement receptor type three-dependent degradation of opsonized erythrocytes by mouse macrophages. J. Immunol. 135, 2668–2672.

    PubMed  CAS  Google Scholar 

  38. Larson R. S. and Springer T. A. (1990) Structure and function of leukocyte integrins. Immunolog. Rev. 114, 181–217.

    Article  CAS  Google Scholar 

  39. Chenoweth D. E. and Goodman M. G. (1983) The C5a receptor of neutrophils and macrophages. Agents de Actions—Suppl. 12, 252–273.

    CAS  Google Scholar 

  40. van Epps D. E. and Chenoweth D. E. (1984) Analysis of the binding of fluorescent C5a and C3a to human peripheral blood leukocytes. J. Immunol. 132, 2862–2867.

    PubMed  Google Scholar 

  41. Gerard N. P. and Gerard C. (1991) The chemotactic receptor for human C5a anaphylatoxin. Nature 349, 614–617.

    Article  PubMed  CAS  Google Scholar 

  42. Ames R. S., Li Y., Sarau H. M., Nuthulaganti P., Foley J. J., Ellis C, et al. (1996) Molecular cloning and characterization of the human anaphylatoxin C3a receptor. J. Biol. Chem. 271, 20,231–20,234.

    Article  PubMed  CAS  Google Scholar 

  43. Morgan B. P. and Walport M. J. (1991) Complement deficiency and disease. Immunol. Today 12, 301–306.

    Article  PubMed  CAS  Google Scholar 

  44. Colten H. R. and Rosen F. S. (1992) Complement deficiencies. Ann. Rev. Immunol 10, 809–834.

    Article  CAS  Google Scholar 

  45. Figueroa J., Andreoni J., and Densen P. (1993) Complement deficiency states and meningococcal disease. Immunolog. Res. 12, 295–311.

    Article  CAS  Google Scholar 

  46. Fukumori Y., Yoshimura K., Ohnoki S., Yamaguchi H., Akagaki Y., and Inai S. (1989) A high incidence of C9 deficiency among healthy blood donors in Osaka. Japan. Int. Immunol. 1, 85–89.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Morgan, B.P. (2000). The Complement System:An Overview . In: Morgan, B.P. (eds) Complement Methods and Protocols. Methods in Molecular Biology, vol 150. Humana Press. https://doi.org/10.1385/1-59259-056-X:1

Download citation

  • DOI: https://doi.org/10.1385/1-59259-056-X:1

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-654-3

  • Online ISBN: 978-1-59259-056-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics