Skip to main content

Cytoplasmic RNA Vector Derived from Nontransmissible Sendai Virus

Production and Use

  • Protocol
Gene Therapy Protocols

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 69))

Abstract

Sendai virus (SeV) is an enveloped virus with a nonsegmented negativestrand RNA genome of 15,384 nucleotides; it is a member of the Paramyxoviridae family (13). The virus is pneumotropic in rodent species such as mice and rats, but no pathogenicity has been reported in humans. SeV has been utilized for generation of hybrid cells between mammalian cells of different species in vitro by use of its cell fusion activity, and it has contributed to somatic cell genetics (4). The inactivated SeV has been also used for generation of a fusogenic viral liposome (hemagglutinating virus of Japan, or Sendai virus [HVJ]-liposome), which aimed to improve the efficiency of liposome-mediated DNA transfer (5,6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lamb R. A. and Kolakofsky D. (1996) Paramyxoviridae: the viruses and their replication,. In Virology, 3rd ed. (Fields B. N., Knipe D. M., and Howley P. M., eds.), Lippincott-Raven Philadelphia, pp. 1177–1204.

    Google Scholar 

  2. Conzelmann K.-K. (1998) Nonsegmented nagative-strand RNA viruses: Genetics and manipulation of viral genomes. Ann. Rev. Genet. 32, 123–162.

    Article  PubMed  CAS  Google Scholar 

  3. Nagai Y. and Kato A. (1999) Paramyxovirus reverse genetics is coming of age. Microbiol. Immunol. 43, 613–624.

    PubMed  CAS  Google Scholar 

  4. Okada Y. and Tadokoro J. (1962) Analysis of giant polynuclear cell formation caused by HVJ virus from Ehrlich’s ascites tumor cells. Exp. Cell. Res. 26, 98–128.

    Article  PubMed  CAS  Google Scholar 

  5. Kato K., Nakanishi M., Kaneda Y., Uchida T., and Okada Y. (1991) Expression of hepatitis B virus surface antigen in adult rat liver. J. Biol. Chem. 26, 3361–3364.

    Google Scholar 

  6. Dzau V., Mann M., Morishita R., and Kaneda Y. (1996) Fusigenic viral lipo-some for gene therapy in cardiovascular diseases. Proc. Natl.Acad. Sci. USA 93, 11421–11425.

    Article  PubMed  CAS  Google Scholar 

  7. Kato A., Sakai Y., Shioda T., et al. (1996) Initiation of Sendai virus multiplication from transfected cDNA or RNA with negative or positive sense. Genes Cells 1, 569–579.

    Article  PubMed  CAS  Google Scholar 

  8. Garcin D., Pelet T., Calain P., et al. (1995) A highly recombinogenic system for the recovery of infectious Sendai paramyxovirus from cDNA. EMBO J. 14, 5773–5784.

    Google Scholar 

  9. Hasan M. K., Kato A., Shioda T., et al. (1997) Creation of an infectious recombinant Sendai virus expressing the firefly luciferase from 3′ proximal first locus. J. Gen. Virol. 78, 2813–2820.

    PubMed  CAS  Google Scholar 

  10. Moriya C., Shioda T., Tashiro K., et al. (1998) Large quantity production with extreme convenience of human SDF-1α and SDF-1β by a Sendai virus vector. FEBSLett. 425, 105–111.

    Article  CAS  Google Scholar 

  11. Yu D., Shioda T., Kato A. et al. (1997) Sendai virus-based expression of HIV-1 gp120: reinforcement by the V(−) version. Genes Cells 2, 457–466.

    Article  PubMed  CAS  Google Scholar 

  12. Sakai Y., Kiyotani K., Fukumura M., et al. (1999) Accommodation of foreign genes into the Sendai virus genome: sizes of inserted genes and viral replication. FEBS Lett. 456, 221–226.

    Article  PubMed  CAS  Google Scholar 

  13. Toriyoshi H., Shioda T., Sato H., et al. (1999) Sendai virus-based production of HIV type 1 subtype B and subtype E envelope glycoprotein 120 antigen and their use for highly sensitive detection of subtype-specific serum antibody. AIDS Res. and Hum. Retroviruses 12, 1109–1120.

    Article  Google Scholar 

  14. Yonemitsu Y., Kitson C., Ferrari S., et al. (2000) Efficient gene transfer to airway epithelium using recombinant Sendai virus. Nat. Biotechnol. 18, 970–973.

    Article  PubMed  CAS  Google Scholar 

  15. Li H-O., Zhu Y-H., Asakawa M., et al. (2000) A cytoplasmic RNA vector derived from nontransmissible Sendai virus with efficient gene transfer and expression. J. Virol. 74, 6564–6569.

    Article  PubMed  CAS  Google Scholar 

  16. Shioda T., Iwasaki K., and Shibuta H. (1986) Determination of the complete nucleotide sequence of Sendai virus genome RNA and the predicted amino acid sequence of the F, HN, and L proteins. Nucleic Acids Res. 14, 1545–1563.

    Article  PubMed  CAS  Google Scholar 

  17. Calain P. and Roux L. (1993) The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. J. Virol. 67, 4822–4830.

    PubMed  CAS  Google Scholar 

  18. Korakofsky D., Pelet T., Garcin D., et al. (1998) Paramyovirus RNA synthesis and requirement for hexamer genome length: the rule of six revisited. J. Virol. 72, 891–899.

    Google Scholar 

  19. Arai T., Matsumoto K., Saitoh K., et al. (1998) A new system for stringent, high-titer vesicular stomatitis virus G protein-pseudotyped retrovirus vector induction by introduction of Cre recombinase into stable prepackaging cell lines. J. Virol. 72, 1115–1121.

    PubMed  CAS  Google Scholar 

  20. Kanegae Y., Takamori K., Sato Y., et al. (1996) Efficient gene activation system on mammalian cell chromosome using recombinant adenovirus producing Cre recombinase. Gene 181, 207–212.

    Article  PubMed  CAS  Google Scholar 

  21. Fuerst T. R., Niles E. G., Studier F. W., and Moss B. (1986) Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc. Natl. Acad. Sci. USA 83, 8122–8126.

    Article  PubMed  CAS  Google Scholar 

  22. Tsung K., Yim J. H., Marti W., Buller R. M. L., and Norton J. A. (1996) Gene expression and cytopathic effect of vaccinia virus inactived by psoralen and longwave UV light. J Virol. 70, 165–171.

    PubMed  CAS  Google Scholar 

  23. Segawa H., Kato M., Yamashita T., and Taira H. (1998) The role of individual cysteine residues of Sendai virus fusion protein in intracellular transport. J. Biochem. 123, 1064–1072.

    PubMed  CAS  Google Scholar 

  24. Curran J., Boeck R., and Kolakofsky D. (1991) The Sendai virus P gene expresses both an essential protein and an inhibitor of RNA synthesis by shuffling modules via mRNA editing. EMBO J. 10, 3079–3085.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Iida, A., Hasegawa, M. (2002). Cytoplasmic RNA Vector Derived from Nontransmissible Sendai Virus. In: Morgan, J.R. (eds) Gene Therapy Protocols. Methods in Molecular Medicine, vol 69. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-141-8:361

Download citation

  • DOI: https://doi.org/10.1385/1-59259-141-8:361

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-723-6

  • Online ISBN: 978-1-59259-141-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics