Skip to main content

Single-Step PCR Optimization Using Touchdown and Stepdown PCR Programming

  • Protocol
PCR Cloning Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 192))

Abstract

Polymerase chain reaction (PCR) optimization and troubleshooting can consume considerable energy and resources because of the finicky and often unpredictable nature of the reactions. Small variations in any of the many variables in a given reaction can have a pronounced effect on the resultant amplicon profile. Reactions that are too stringent yield negligible product, and reactions that are not stringent enough yield artifactual amplicons. Variables include concentrations of Mg2+, H+, dNTPs, primers, and template, as well as cycling parameters. Regarding the latter, the value selected for the annealing temperature is most critical. Unfortunately, even with the most sophisticated algorithms (i.e., OLIGO) it is often difficult to predict the amplification optima a priori leaving no other choice but to employ empirical determination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Don, R. H., Cox, P. T., Wainwright, B. J., Baker, K., and Mattick, J. S. (1991) ′Touchdown′ PCR to circumvent spurious priming during gene amplification. Nucl. Acids Res. 19, 4008.

    Article  CAS  PubMed  Google Scholar 

  2. Hecker, K. H. and Roux, K. H. (1996) High and low annealing temperatures increase both specificity and yield in TD and SD PCR. BioTechniques 20, 478–485.

    CAS  PubMed  Google Scholar 

  3. Roux, K. H. (1994) Using mismatched primer-template pairs in TD PCR. BioTechniques 16, 812–814.

    CAS  PubMed  Google Scholar 

  4. Knoth, K., Roberds, S. Poteet, C., and Tamkun, M. (1988) Highly degenerate inosine-containing primers specifically amplify rare cDNA using the polymerase chain reaction. Nucl. Acids Res. 16, 10,932.

    Article  CAS  PubMed  Google Scholar 

  5. Patil, R. V. and Dekker, E. E. (1990) PCR amplification of an Escherichia coli gene using mixed primers containing deoxyinosine at ambiguous positions in degenerate amino acid codons. Nucl. Acids Res. 18, 3080.

    Article  CAS  PubMed  Google Scholar 

  6. Batzer, M. A., Carlton J. E., and Deininger, P. L. (1991) Enhanced evolutionary PCR using oligonucleotides with inosine at the 3′-terminus. Nucleic Acids Res. 19, 5081.

    Article  CAS  PubMed  Google Scholar 

  7. Roux, K. H. (1995) Opitimization and troubleshooting in PCR. PCR Meth. Applicat. 4, S185–S194.

    CAS  Google Scholar 

  8. Peterson, M. G., Inostroza, J., Maxon, M. E., Flores, O., Adomon, A., Reinberg, D., and Tjian, R. (1991) Structure and functional properties of human general transcription factor IIE. Nature 354, 369–373.

    Article  CAS  PubMed  Google Scholar 

  9. Knittel, T. and Picard, D. (1993) PCR with degenerate primers containing deoxyinosine fails with Pfu DNA polymerase. PCR Meth. Applicat. 2, 346–347.

    CAS  Google Scholar 

  10. Rychlik, W. and Spencer, W. J. (1989) A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucl. Acids Res. 17, 8543–8551.

    Article  CAS  PubMed  Google Scholar 

  11. Rychlik, W. (1994) New algorithm for determining primer efficiency in PCR and sequencing. J. NIHRes. 6, 78.

    Google Scholar 

  12. D′ Aquila, R. T., Bechtel, L. J., Viteler, J. A., Eron, J. J., Gorczyca, P., and Kaplin, J. C. (1991) Maximizing sensitivity and specificity of PCR by preamplification heating. Nucl. Acids Res. 19, 3749.

    Article  PubMed  Google Scholar 

  13. Erlich, H. A., Gelfand, D., and Sninsky, J. J. (1991) Recent advances in the polymerase chain reaction. Science 252, 1643–1651.

    Article  CAS  PubMed  Google Scholar 

  14. Bell, D. A. and DeMarini, D. (1991) Excessive cycling converts PCR products to random-length higher molecular weight fragments. Nucl. Acids Res. 19, 5079.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Roux, K.H. (2002). Single-Step PCR Optimization Using Touchdown and Stepdown PCR Programming. In: Chen, BY., Janes, H.W. (eds) PCR Cloning Protocols. Methods in Molecular Biology™, vol 192. Humana Press. https://doi.org/10.1385/1-59259-177-9:031

Download citation

  • DOI: https://doi.org/10.1385/1-59259-177-9:031

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-969-8

  • Online ISBN: 978-1-59259-177-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics