Skip to main content

Ethylation Interference

  • Protocol
DNA-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 148))

  • 1708 Accesses

Abstract

Structural studies of DNA-protein complexes have now made it clear that specific sequence recognition in these systems is accomplished in two ways, either directly by the formation of hydrogen bonds to base-pair edges from amino acid side chains located on a DNA-binding motif, such as a helix-turnhelix, or indirectly as a result of sequence-dependent distortions of the DNA conformation (1). These contacts occur in the context of oriented complexes between macromolecules that juxtapose the specific recognition elements. As part of these processes, proteins make a large number of contacts to the phosphodiester backbone of DNA, as was predicted from biochemical assays of the ionic strength dependence of DNA binding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Otwinowski, Z., Schevitz, R. W., Zhang, R.-G., Lawson, C. L., Joachimiak, A., Marmorstein, R. Q., et al. (1988) Crystal structure of the trp repressor/operator complex at atomic resolution. Nature 335, 321–329.

    Article  PubMed  CAS  Google Scholar 

  2. Siebenlist, U. and Gilbert, W. (1980) Contacts between Escherichia coli RNA polymerase and an early promoter of phage T7. Proc. Natl. Acad. Sci. USA 77, 122–126.

    Article  PubMed  CAS  Google Scholar 

  3. Hayes, J. J. and Tullius, T. D. (1989) The missing nucleoside experiment: a new technique to study recognition of DNA by protein. Biochemistry 28, 9521–9527.

    Article  PubMed  CAS  Google Scholar 

  4. Damante, G., Fabbro, D., Pellizzari, L., Civitareale, D., Guazzi, S., Polycarpouschwartz, M., et al. (1994) Sequence-specific DNA recognition by the thyroid transcription factor-1 homeodomain. Nucleic Acids Res. 22, 3075–3083.

    Article  PubMed  CAS  Google Scholar 

  5. Calnan, B. J., Tidor, B., Biancalana, S., Hudson, D., and Frankel, A. D. (1991) Arginine-mediated RNA recognition-the arginine fork. Science 252, 1167–1171.

    Article  CAS  Google Scholar 

  6. Li, H. L. and Nicholson, A. W. (1996) Defining the enzyme binding domain of a ribonuclease III processing signal. Ethylation interference and hydroxyl radical footprinting using catalytically inactive RNase III mutants. EMBO J. 15, 1421–1433.

    PubMed  CAS  Google Scholar 

  7. Rafferty, J. B., Somers, W. S., Saint-Girons, I., and Phillips, S. E. V. (1989) Three dimensional crystal structures of Escherichia coli met repressor with and without corepressor. Nature 341, 705–710.

    Article  PubMed  CAS  Google Scholar 

  8. Somers, W. S. and Phillips, S. E. V. (1992) Crystal structure of the met repressoloperator complex at 28Å resolution: DNA recognition by p-strands. Nature 359, 387–393.

    Article  PubMed  CAS  Google Scholar 

  9. Jensen, D. E. and Reed, D. J. (1978) Reaction of DNA with alkylating agents. Quantitation of alkylation by ethylnitrosourea of oxygen and nitrogen sites on poly [dA-dT] including phosphotriester formation. Biochemistry 17, 5098–5107.

    Article  PubMed  CAS  Google Scholar 

  10. Maxam, A. M. and Gilbert, W. (1977) A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74, 560–564.

    Article  PubMed  CAS  Google Scholar 

  11. Maxam, A. M. and Gilbert, W. (1980) Sequencing end-labelled DNA with basespecific chemical cleavages. Methods Enzymol. 65, 499–560.

    Article  PubMed  CAS  Google Scholar 

  12. Singer, B. (1976) All oxygens in nucleic acids react with carcinogenic ethylating agents. Nature 264, 333–339.

    Article  PubMed  CAS  Google Scholar 

  13. Phillips, S. E. V., Manfield, I., Parsons, I., Davidson, B. E., Rafferty, J. B., Somers, W. S., et al. (1989) Cooperative tandem binding of Met repressor from Escherichia coli. Nature 341, 711–715.

    Article  PubMed  CAS  Google Scholar 

  14. Bushman, F. D., Anderson, J. E., Harrison, S. C., and Ptashne, M. (1985) Ethylation interference and X-ray crystallography identify similar interactions between 434 repressor and operator. Nature 316, 651–653.

    Article  PubMed  CAS  Google Scholar 

  15. Ptashne, M. (1992) A genetic switch: Phage [lambda] and higher organisms. Cell and Blackwell Scientific, Cambridge, MA; 2nd edition.

    Google Scholar 

  16. Summers, M. F., Powell, C., Egan, W., Byrd, R. A., Wilson, W. D., and Zon, G. (1986) Alkyl phosphotriester modified oligodeoxyribonucleotides. VI. NMR and UV spectroscopic studies of ethyl phospotriester (Et) modified Rp-Rp and Sp-Sp duplexes, [GGAA(Et)TTCC]2. Nucleic Acids Res. 14, 7421–7436.

    Article  PubMed  CAS  Google Scholar 

  17. Noble, S. A., Fisher, E. F., and Caruthers, M. H. (1984) Methylphosphonates as probes of protein-nucleic acid interactions. Nucleic Acids Res. 12, 3387–3304.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Manfield, I.W., Stockley, P.G. (2001). Ethylation Interference. In: Moss, T. (eds) DNA-Protein Interactions. Methods in Molecular Biology, vol 148. Humana Press. https://doi.org/10.1385/1-59259-208-2:229

Download citation

  • DOI: https://doi.org/10.1385/1-59259-208-2:229

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-625-3

  • Online ISBN: 978-1-59259-208-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics