Skip to main content

Selection of Glycosaminoglycan-Deficient Mutants

  • Protocol
Proteoglycan Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 171))

  • 1232 Accesses

Abstract

Mutant cell lines provide an excellent model for studying the structure, assembly and function of proteoglycans under the controlled conditions of tissue culture. Numerous proteoglycan-deficient strains have been isolated, mostly in Chinese hamster ovary cells, and in many cases the defects have been characterized both genetically and biochemically (see Table 1). Biochemical analysis of the mutants has confirmed that various enzyme activities detected in cell-free extracts using synthetic substrates actually play a role in proteoglycan assembly in vivo. The cell lines have allowed investigators to study how altering the composition of proteoglycans affects fundamental properties of cells, such as adhesion and signaling. Moreover, animal cell mutants provide the background for predicting the phenotype of organismal mutants defective in proteoglycan assembly.

Table 1 Cell Mutants with Defined Defects in Glycosaminoglycan Biosynthesis

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Esko, J. D. (1989) Replica plating of animal cells. Meth. Cell Biol. 32, 387–422.

    Article  CAS  Google Scholar 

  2. Inestrosa, N. C., Matthew, W. D., Reiness, C. G., Hall, Z. W., and Reichardt, L. F. (1985) Atypical distribution of asymmetric acetylcholinesterase in mutant PC 12 pheochromocytoma cells lacking a cell surface heparan sulfate proteoglycan. J. Neurochem. 45, 86–94.

    Article  PubMed  CAS  Google Scholar 

  3. Banfield, B. W., Leduc, Y., Esford, L., Schubert, K., and Tufaro, F. (1995) Sequential isolation of proteoglycan synthesis mutants by using herpes simplex virus as a selective agent: Evidence for a proteoglycan-independent virus entry pathway. J. Virol. 69, 3290–3298.

    PubMed  CAS  Google Scholar 

  4. Gruenheid, S., Gatzke, L., Meadows, H., and Tufaro, F. (1993) Herpes simplex virus infection and propagation in a mouse L cell mutant lacking heparan sulfate proteoglycans. J.Virol. 67,93–100.

    PubMed  CAS  Google Scholar 

  5. WuDunn, D. and Spear, P.G. (1989) Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J. Virol. 63, 52–58.

    PubMed  CAS  Google Scholar 

  6. Shieh, M.-T., WuDunn, D., Montgomery, R. I., Esko, J. D., and Spear, P. G. (1992) Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. J. Cell Biol. 116, 1273–1281.

    Article  PubMed  CAS  Google Scholar 

  7. Spear, P. G. (1993) Entry of alphaherpesviruses into cells. Virology 4, 167–180.

    CAS  Google Scholar 

  8. Shieh, M. T. and Spear, P. G. (1994) Herpesvirus-induced cell fusion that is dependent on cell surface heparan sulfate or soluble heparin. J. Virol. 68, 1224–1228.

    PubMed  CAS  Google Scholar 

  9. Shukla, D., Liu, J., Blaiklock, P., Shworak, N. W., Bai, X. M., Esko, J. D., et al. (1999) A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99, 13–22.

    Article  PubMed  CAS  Google Scholar 

  10. Stanley, P. and Ioffe, E. (1995) Glycosyltransferase mutants: Key to new insights in glycobiology. FASEB J. 9, 1436–1444.

    PubMed  CAS  Google Scholar 

  11. Cummings, R. D. (1999) Plant Lectins, in Essentials of Glycobiology (Varki, A., Cummings, R. D., Esko, J. D., Freeze, H. H., Hart, G. W., and Marth, J. D., eds.) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 455–467.

    Google Scholar 

  12. Stanley, P. (1993) Use of mammalian cell mutants to study the functions of N-and O-linked glycosylation, in Cell Surface and Extracellular Glycoconjugates: Structure and Function (Roberts, D. D. and Mecham, R. P., eds.) Academic Press, San Diego, pp. 181–222.

    Google Scholar 

  13. Stanley, P., Raju, T. S. and Bhaumik, M. (1996) CHO cells provide access to novel N-glycans and developmentally regulated glycosyltransferases. Glycobiology 6, 695–699.

    Article  PubMed  CAS  Google Scholar 

  14. Esko, J. D. (1999) Genetic Disorders of Glycosylation in Cultured Cells, in Essentials of Glycobiology (Varki, A., Cummings, R. D., Esko, J. D., Freeze, H. H., Hart, G. W., and Marth, J. D., eds.) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 469–477.

    Google Scholar 

  15. Van Den Born, J., Gunnarsson, K., Bakker, M. A. H., Kjellén, L., Kusche-Gullberg, M., Maccarana, M., et al. (1996) Presence of N-unsubstituted glucosamine units in native heparan sulfate revealed by a monoclonal antibody. J. Biol. Chem. 270, 31,303–31,309.

    Google Scholar 

  16. Van Den Born, J., Jann, K., Assmann, K. J. M., Lindahl, U., and Berden, J. H. M. (1996) N-acetylated domains in heparan sulfates revealed by a monoclonal antibody against the Escherichia coli K5 capsular polysaccharide-Distribution of the cognate epitope in normal human kidney and transplant kidney with chronic vascular rejection. J. Biol. Chem. 271, 22,802–22,809.

    Article  PubMed  CAS  Google Scholar 

  17. Van Kuppevelt, T. H., Dennissen, M. A. B. A., Van Venrooij, W. J., Hoet, R. M. A., and Veerkamp, J. H. (1998) Generation and application of type-specific anti-heparan sulfate antibodies using phage display technology-Further evidence for heparan sulfate heterogeneity in the kidney. J. Biol. Chem. 273, 12,960–12,966.

    Article  PubMed  Google Scholar 

  18. Lappi, D. A., Ying, W., Barthelemy, I., Martineau, D., Prieto, I., Benatti, L., Soria, M., and Baird, A. (1994) Expression and activities of a recombinant basic fibroblast growth factor-saporin fusion protein. J. Biol. Chem. 269, 12,552–12,558.

    PubMed  CAS  Google Scholar 

  19. Lappi, D. A., Maher, P. A., Martineau, D., and Baird, A. (1991) The basic fibroblast growth factor-saporin mitotoxin acts through the basic fibroblast growth factor receptor. J. Cell Physiol. 147, 17–26.

    Article  PubMed  CAS  Google Scholar 

  20. Bai, X. M., Wei, G., Sinha, A., and Esko, J. D. (1999) Chinese hamster ovary cell mutants defective in glycosaminoglycan assembly and glucuronosyltransferase I. J. Biol. Chem. 274, 13,017–13,024.

    Article  PubMed  CAS  Google Scholar 

  21. Jackson, R. L., Busch, S. J., and Cardin, A. D. (1991) Glycosaminoglycans: Molecular properties, protein interactions, and role in physiological processes. Physiol. Rev. 71, 481–539.

    PubMed  CAS  Google Scholar 

  22. Lappi, D. A., Martineau, D., and Baird, A. (1989) Biological and chemical characterization of basic FGF-saporin mitotoxin. Biochem. Biophys. Res. Commun. 160, 917–923.

    Article  PubMed  CAS  Google Scholar 

  23. Lappi, D. A., Matsunami, R., Martineau, D., and Baird, A. (1993) Reducing the heterogeneity of chemically conjugated targeted toxins: homogeneous basic FGF-saporin. Anal. Biochem. 212, 446–451.

    Article  PubMed  CAS  Google Scholar 

  24. Buechler, Y. J., Sosnowski, B. A., Victor, K. D., Parandoosh, Z., Bussell, S. J., Shen, C., et al. (1995) Synthesis and characterization of a homogeneous chemical conjugate between basic fibroblast growth factor and saporin. Eur. J. Biochem. 234, 706–713.

    Article  PubMed  CAS  Google Scholar 

  25. McDonald, J. R., Ong, M., Shen, C., Parandoosh, Z., Sosnowski, B., Bussell, S., and Houston, L. L. (1996) Large-scale purification and characterization of recombinant fibroblast growth factor-saporin mitotoxin. Protein. Expr. Purif. 8, 97–108.

    Article  PubMed  CAS  Google Scholar 

  26. Bai, X. M. and Esko, J. D. (1996) An animal cell mutant defective in heparan sulfate hexuronic acid 2-O-sulfation. J. Biol.C hem. 271, 17,711–17,717.

    CAS  Google Scholar 

  27. de Agostini, A. L., Lau, H. K., Leone, C., Youssoufian, H., and Rosenberg, R. D. (1990) Cell mutants defective in synthesizing a heparan sulfate proteoglycan with regions of defined monosaccharide sequence. Proc. Natl. Acad. Sci. (USA) 87, 9784–9788.

    Article  Google Scholar 

  28. Esko, J. D., Stewart, T. E., and Taylor, W. H. (1985) Animal cell mutants defective in glycosaminoglycan biosynthesis. Proc. Natl. Acad. Sci. (USA) 82, 3197–3201.

    Article  CAS  Google Scholar 

  29. Esko, J. D., Weinke, J. L., Taylor, W. H., Ekborg, G., Rodén, L., Anantharamaiah, G., and Gawish, A. (1987) Inhibition of chondroitin and heparan sulfate biosynthesis in Chinese hamster ovary cell mutants defective in galactosyltransferase I. J. Biol. Chem. 262, 12,189–12,195.

    PubMed  CAS  Google Scholar 

  30. Lidholt, K., Weinke, J. L., Kiser, C. S., Lugemwa, F. N., Bame, K. J., Cheifetz, S., et al. (1992) A single mutation affects both N-acetylglucosaminyltransferase and glucuronosyltransferase activities in a Chinese hamster ovary cell mutant defective in heparan sulfate biosynthesis. Proc. Natl. Acad. Sci. (USA) 89, 2267–2271.

    Article  CAS  Google Scholar 

  31. McCormick, C., Leduc, Y., Martindale, D., Mattison, K., Esford, L.E., Dyer, A. P., and Tufaro, F. (1998) The putative tumour suppressor EXT1 alters the expression of cellsurface heparan sulfate. Nat. Genet. 19, 158–161.

    Article  PubMed  CAS  Google Scholar 

  32. Kingsley, D. M., Kozarsky, K. F., Hobbie, L., and Krieger, M. (1986) Reversible defects in O-linked glycosylation and LDL receptor expression in a UDP-Gal/UDP-GalNAc 4-epimerase deficient mutant. Cell 44, 749–759.

    Article  PubMed  CAS  Google Scholar 

  33. Esko, J. D., Rostand, K. S., and Weinke, J. L. (1988) Tumor formation dependent on proteoglycan biosynthesis. Science 241, 1092–1096.

    Article  PubMed  CAS  Google Scholar 

  34. Esko, J. D., Elgavish, A., Prasthofer, T., Taylor, W. H., and Weinke, J. L. (1986) Sulfate transport-deficient mutants of Chinese hamster ovary cells. Sulfation of glycosaminoglycans dependent on cysteine. J. Biol. Chem. 261, 15,725–15,733.

    PubMed  CAS  Google Scholar 

  35. Bame, K. J. and Esko, J. D. (1989) Undersulfated heparan sulfate in a Chinese hamster ovary cell mutant defective in heparan sulfate N-sulfotransferase. J. Biol. Chem. 264, 8059–8065.

    PubMed  CAS  Google Scholar 

  36. Ishihara, M., Kiefer, M. C., Barr, P. J., Guo, Y., and Swiedler, S. J. (1992) Selection of COS cell mutants defective in the biosynthesis of heparan sulfate proteoglycan. Anal. Biochem. 206, 400–407.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Bai, X., Crawford, B., Esko, J.D. (2001). Selection of Glycosaminoglycan-Deficient Mutants. In: Iozzo, R.V. (eds) Proteoglycan Protocols. Methods in Molecular Biology™, vol 171. Humana Press. https://doi.org/10.1385/1-59259-209-0:309

Download citation

  • DOI: https://doi.org/10.1385/1-59259-209-0:309

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-759-5

  • Online ISBN: 978-1-59259-209-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics