Skip to main content

Reconstitution of Chromatin In Vitro

  • Protocol
Genomic Imprinting

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 181))

Abstract

It is now generally believed that DNA methylation is responsible for genomic imprinting in mammals (1). Recent experimental evidence has provided an elegant mechanism for repression of gene expression by DNA methylation. This evidence suggests that proteins that recognize specifically methylated CpGs may contribute to the formation of inactive chromatin (2-5). Nucleosomes are the basic unit of chromatin, consisting of a core of 146 bp of DNA wrapped around a histone octamer (two molecules of each of H2A, H2B, H3, and H4) and a stretch of linker DNA between adjacent nucleosomes. The binding of a fifth histone, known as a linker histone or H1, promotes the packaging of strings of nucleosomes into a 30 nm chromatin fiber (6). Packaging of DNA into nucleosomes and the chromatin fiber greatly restricts the availability of the DNA for nuclear processes such as transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaenisch, R. (1997) DNA methylation and imprinting: why bother? Trends Genet. 13, 323–329.

    Article  PubMed  CAS  Google Scholar 

  2. Kass, S. U., Pruss, D., and Wolffe, A. P. (1997) How does DNA methylation repress transcription? Trends Genet. 13, 444–449.

    Article  PubMed  CAS  Google Scholar 

  3. Ng, H. H. and Bird, A. (1999) DNA methylation and chromatin modification. Curr. Opin. Genet. Dev. 9, 158–163.

    Article  PubMed  CAS  Google Scholar 

  4. Graessmann, M. and Graessmann, A. (1993) DNA methylation, chromatin structure and the regulation of gene expression, in DNA Methylation: Molecular Biology and Biological Signifi cance (Jost, J. P. and Saluz, H. P., eds.), Birkhauser-Verlag, Basel, pp. 404–424.

    Google Scholar 

  5. Kass, S. U., Landsberger, N., and Wolffe, A. P. (1997) DNA methylation directs a time-dependent repression of transcription initiation. Curr. Biol. 7, 157–165.

    Article  PubMed  CAS  Google Scholar 

  6. Wolffe, A.P. (1995) Chromatin: Structure and Function. Academic, San Diego, CA.

    Google Scholar 

  7. Nan, X., Ng, H. H., Johnson, C. A., Laherty, C. D., Turner, B. M., Eisenman, R. N., and Bird, A. (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389.

    Article  PubMed  CAS  Google Scholar 

  8. Jones, P. L., Veenstra, G. J., Wade, P. A., Vermaak, D., Kass, S. U., Landsberger, N., Strouboulis, J., and Wolffe, A.P. (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet. 19, 187–19

    Article  PubMed  CAS  Google Scholar 

  9. Jeddeloh, J. A., Stokes, T. L., and Richards, E. J. (1999) Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nature Genet. 22, 94–97.

    Article  PubMed  CAS  Google Scholar 

  10. Godde, J. S., Kass, S. U., Hirst, M. C., and Wolffe, A. P. (1996) Nucleosome assembly on methylated CGG triplet repeats in the fragile X mental retardation gene 1 promoter. J. Biol. Chem. 271 24,325–24,32

    Article  PubMed  CAS  Google Scholar 

  11. Nightingale, K. and Wolffe, A.P. (1995) Methylation at CpG sequences does not influence histone H1 binding to a nucleosome including a Xenopus borealis 5 S rRNA gene. J. Biol. Chem. 270, 4197–4200.

    Article  PubMed  CAS  Google Scholar 

  12. Campoy, F. J., Meehan, R. R., McKay, S., Nixon, J., and Bird, A. (1995) Binding of histone H1 to DNA is indifferent to methylation at CpG sequences. J. Biol. Chem. 270, 26,473–26,481.

    Article  PubMed  CAS  Google Scholar 

  13. McArthur, M. and Thomas, J. O. (1996) A preference of histone H1 for methylated DNA. EMBO J. 15, 1705–1714.

    PubMed  CAS  Google Scholar 

  14. Rhodes, D. and Laskey, R. A. (1989) Assembly of nucleosomes and chromatin. Methods Enzymol. 170, 575–585.

    Article  PubMed  CAS  Google Scholar 

  15. Simpson, R. T., Thoma, F., and Brubaker, J. M. (1985) Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: a model system for study of higher order structure. Cell 42, 799–808.

    Article  PubMed  CAS  Google Scholar 

  16. Tse, C., Sera, T., Wolffe, A. P., and Hansen, J. C. (1998) Disruption of higherorder folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol. Cell Biol. 18, 4629–4638.

    PubMed  CAS  Google Scholar 

  17. Steger, D. J., Eberharter, A., John, S., Grant, P. A., and Workman, J. L. (1998) Purified histone acetyltransferase complexes stimulate HIV-1 transcription from preassembled nucleosomal arrays. Proc. Natl. Acad. Sci. USA 95, 12,924–12,929.

    Article  PubMed  CAS  Google Scholar 

  18. Ito, T., Bulger, M., Pazin, M. J., Kobayashi, R., and Kadonaga, J. T. (1997) ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90, 145–155.

    Article  PubMed  CAS  Google Scholar 

  19. Almouzni, G. (1998) Assembly of chromatin and nuclear structures in Xenopus egg extracts, in Chromatin: A Practical Approach (Gould, H., ed.), Oxford University Press, New York.

    Google Scholar 

  20. Becker, P. B., Tsukiyama, T., and Wu, C. (1994) Chromatin assembly extracts from Drosophila embryos. Methods Cell Biol. 44, 207–223.

    Article  PubMed  CAS  Google Scholar 

  21. Ura, K., Hayes, J. J., and Wolffe, A. P. (1995) A positive role for nucleosome mobility in the transcriptional activity of chromatin templates: restriction by linker histones. EMBO J. 14, 3752–3765.

    PubMed  CAS  Google Scholar 

  22. Ura, K., Nightingale, K., and Wolffe, A. P. (1996) Differential association of HMG1 and linker histones B4 and H1 with dinucleosomal DNA: structural transitions and transcriptional repression. EMBO J. 15, 4959–4969.

    PubMed  CAS  Google Scholar 

  23. Ura, K., Kurumizaka, H., Dimitrov, S., Almouzni, G., and Wolffe, A. P. (1997) Histone acetylation: influence on transcription, nucleosome mobility and positioning, and linker histone-dependent transcriptional repression. EMBO J 16, 2096–2107.

    Article  PubMed  CAS  Google Scholar 

  24. Thoma, F. and Koller, T. (1977) Influence of histone H1 on chromatin structure. Cell 12, 101–107.

    Article  PubMed  CAS  Google Scholar 

  25. Noll, H. and Noll, M. (1989) Sucrose gradient techniques and applications to nucleosome structure. Methods Enzymol. 170, 55–116.

    Article  PubMed  CAS  Google Scholar 

  26. Owen-Hughes, T. and Workman, J.L. (1994) Experimental analysis of chromatin function in transcription control. Crit. Rev. Eukaryot. Gene. Expr. 4, 403–441.

    PubMed  CAS  Google Scholar 

  27. Hayes, J. J. and Wolffe, A. P. (1993) Preferential and asymmetric interaction of linker histones with 5S DNA in the nucleosome. Proc. Natl. Acad. Sci. USA 90, 6415–6419.

    Article  PubMed  CAS  Google Scholar 

  28. Ura, K. and Wolffe, A. P. (1996) Reconstruction of transcriptionally active and silent chromatin. Methods Enzymol. 274, 257–271.

    Article  PubMed  CAS  Google Scholar 

  29. Sato, M., Ura K., Hohmura, I., Tokumasu, F., Yoshimura, S., Hanaoka, F., and Takeyasu, K. (1999) Atomic force microscopy sees nucleosome positioning and histone H1-induced compaction in reconstituted chromatin. FEBS Lett. 452, 267–271.

    Article  PubMed  CAS  Google Scholar 

  30. Ura, K., Araki, M., Saeki, H., Masutani, C., Ito, T., Iwai, S., et al. (2001) ATP-dependent chromatin remodeling facilities nucleotide excision repair of UV-induced DNA lesions in synthetic dinucleosomes. EMBO J. 20, 2004–2014.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Ura, K., Kaneda, Y. (2002). Reconstitution of Chromatin In Vitro. In: Ward, A. (eds) Genomic Imprinting. Methods in Molecular Biology™, vol 181. Humana Press. https://doi.org/10.1385/1-59259-211-2:309

Download citation

  • DOI: https://doi.org/10.1385/1-59259-211-2:309

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-741-0

  • Online ISBN: 978-1-59259-211-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics