Skip to main content

In Vitro Differentiation of Embryonic Stem Cells and Analysis of Cellular Phenotypes

  • Protocol
Gene Knockout Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 158))

Abstract

Embryonic stem (ES) cells, the totipotent cells of early embryos established as permanent lines (1,2) retain their developmental capacity in vivo (3) as well as in vitro (see 46). The totipotent properties of ES cells are the basis of the gene-targeting technology to create mutant mice strains with inactivated genes by homologous recombination (7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans, M. J. and Kaufman, M. H. (1981) Establishment in culture of pluripotential stem cells from mouse embryos. Nature 291, 154–156.

    Article  Google Scholar 

  2. Martin, G. (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma cells. Proc. Nat. Acad. Sci. USA 78, 7634–7638.

    Article  PubMed  CAS  Google Scholar 

  3. Bradley, A., Evans, M., Kaufman, M. H., and Robertson, E. (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–256.

    Article  PubMed  CAS  Google Scholar 

  4. Doetschman, T. C., Eistetter, H. R., Katz, M., et al. (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 27–45.

    PubMed  CAS  Google Scholar 

  5. Keller, G. (1995) In vitro differentiation of embryonic stem cells. Curr. Opin. Cell Biol. 7, 862–869.

    Article  PubMed  CAS  Google Scholar 

  6. Wobus, A., Rohwedel, J., Strübing, C., et al. (1997) In vitro differentiation of embryonic stem cells, in Methods in Developmental Toxicology and Biology, (Klug, E. and Thiel, R., eds.) Blackwell Science, Berlin, Vienna, pp. 1–17.

    Google Scholar 

  7. Thomas, K. R. and Capecchi, M. R. (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512.

    Article  PubMed  CAS  Google Scholar 

  8. Wobus, A. M., Wallukat, G., and Hescheler, J. (1991) Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation 48, 173–182.

    Article  PubMed  CAS  Google Scholar 

  9. Maltsev, V. A., Rohwedel, J., Hescheler, J., and Wobus, A. M. (1993) Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech. Dev. 44, 41–50.

    Article  PubMed  CAS  Google Scholar 

  10. Maltsev, V. A., Wobus, A. M., Rohwedel, J., et al. (1994) Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ. Res. 75, 233–244.

    PubMed  CAS  Google Scholar 

  11. Miller-Hance, W. C., LaCorbiere, M., Fuller, S. J., et al. (1993) In vitro chamber specification during embryonic stem cell cardiogenesis. J. Biol. Chem. 268, 25,244–25,252.

    PubMed  CAS  Google Scholar 

  12. Rohwedel, J., Maltsev, V., Bober, E., et al. (1994) Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev. Biol. 164, 87–101.

    Article  PubMed  CAS  Google Scholar 

  13. Rose, O., Rohwedel, J., Reinhardt, S., et al. (1994) Expression of M-cadherin protein in myogenic cells during prenatal mouse development and differentiation of embryonic stem cells in culture. Dev. Dyn. 201, 245–259.

    PubMed  CAS  Google Scholar 

  14. Strübing, C., Ahnert-Hilger, G., Jin, S., et al. (1995) Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons. Mech. Dev. 53, 275–287.

    Article  PubMed  Google Scholar 

  15. Bain, G., Kitchens, D., Yao, M., et al. (1995) Embryonic stem cells express neuronal properties in vitro. Dev. Biol. 168, 342–357.

    Article  PubMed  CAS  Google Scholar 

  16. Fraichard, A., Chassande, O., Bilbaut, G., et al. (1995) In vitro differentiation of embryonic stem cells into glial cells and functional neurons. J. Cell Sci. 108, 3181–3188.

    PubMed  CAS  Google Scholar 

  17. Okabe, S., Forsberg-Nilsson, K., Spiro, A. C., et al. (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech. Dev. 59, 89–102.

    Article  PubMed  CAS  Google Scholar 

  18. Wiles, M. V. and Keller, G. (1991) Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development 111, 259–267.

    PubMed  CAS  Google Scholar 

  19. Hole, N. and Smith, A.G. (1994) Embryonic stem cells and hematopoiesis, in Culture of Hematopoietic Cells, Wiley-Liss, New York, pp. 235–249.

    Google Scholar 

  20. Dani, C., Smith A. G., Dessolin, S., et al. (1997) Differentiation of embryonic stem cells into adipocytes in vitro. J. Cell Sci. 110, 1279–1285.

    PubMed  CAS  Google Scholar 

  21. Bagutti, C., Wobus, A. M., Fässler, R., and Watt, F. (1996) Differentiation of embryonal stem cells into keratinocytes: Comparison of wild-type and β1 integrin-deficient cells. Dev. Biol. 179, 184–196.

    Article  PubMed  CAS  Google Scholar 

  22. Risau, W., Sariola, H., Zerwes, H.-G., et al. (1988) Vasculogenesis and angiogenesis in embryonic stem cell-derived embryoid bodies. Development 102, 471–478.

    PubMed  CAS  Google Scholar 

  23. Weitzer, G., Milner, D. J., Kim, J. U.,et al. (1995) Cytoskeletal control of myogenesis: a desmin null mutation blocks the myogenic pathway during embryonic stem cell differentiation. Dev. Biol. 172, 422–439.

    Article  PubMed  CAS  Google Scholar 

  24. Drab, M., Haller, H., Bychkow, R., et al. (1997) From totipotent embryonic stem cells to spontaneously contracting vascular smooth muscle cells: a retinoic acid and db-cAMP in vitro differentiation model. FASEB J. 11, 905–915.

    PubMed  CAS  Google Scholar 

  25. Wobus, A. M., Guan, K., Jin, S., et al. (1997) Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J. Mol. Cell. Cardiol. 29, 1525–1539.

    Article  PubMed  CAS  Google Scholar 

  26. Hescheler, J., Fleischmann, B. K., Lentini, S., et al. Embryonic stem cells: a modelWENAPOT to study structural and functional properties in cardiomyogenesis. Cardiovasc. Res. (in press).

    Google Scholar 

  27. Robbins, J., Gulick, J., Sanchez, A., Howles, P., and Doetschman, T. (1990) Mouse embryonic stem cells express the cardiac myosin heavy chain genes during development in vitro. J. Biol. Chem. 265, 11,905–11,909.

    PubMed  CAS  Google Scholar 

  28. Sanchez, A., Jones, W. K., Gulick, J., et al. (1991) Myosin heavy chain gene expression in mouse embryoid bodies. J. Biol. Chem. 266, 22,419–22,426.

    PubMed  CAS  Google Scholar 

  29. Fässler, R., Rohwedel, J., Maltsev, V.,et al. (1996) Differentiation and integrity of cardiac muscle cells are impaired in the absence of β1 integrin. J. Cell Sci. 109, 2989–2999.

    PubMed  Google Scholar 

  30. Johansson, B. M. and Wiles, M. W. (1995) Evidence for involvement of Activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol. Cell. Biol. 15, 141–151.

    PubMed  CAS  Google Scholar 

  31. Wobus, A. M., Rohwedel, J., Maltsev, V., and Hescheler, J. (1994) In vitro differentiation of embryonic stem cells into cardiomyocytes or skeletal muscle cells is specifically modulated by retinoic acid. Roux’s Arch. Dev. Biol. 204, 36–45.

    Article  CAS  Google Scholar 

  32. Trower, M. K. and Elgar, G. S. (1994) PCR cloning using T-vectors, in Protocols for Gene Analysis, Methods in Molecular Biology, vol. 31. Humana Press, (Harwood, A. J., ed.), Totowa, NJ, pp. 19–33.

    Google Scholar 

  33. Rudnicki, M. A. and McBurney M. W. (1987) Cell culture methods and induction of differentiation of embryonal carcinoma cell lines, in Teratocarcinomas and Embryonic Stem Cells — A Practical Approach. (Robertson, E. J. ed.) IRL Press Oxford, Washington, DC, pp. 19–49.

    Google Scholar 

  34. Wobus, A. M., Kleppisch, T., Maltsev, V., and Hescheler, J. (1994) Cardiomyocyte-like cells differentiated in vitro from embryonic carcinoma cells P19 are characterized by functional expression of adrenoceptors and Ca2+ channels. In Vitro Cell. Dev. Biol. 30A, 425–434.

    Article  CAS  Google Scholar 

  35. Rohwedel, J., Sehlmeyer, U., Shan, J., et al. (1996) Primordial germ cell-derived mouse embryonic germ (EG) cells in vitro resemble undifferentiated stem cells with respect to differentiation capacity and cell cycle distribution. Cell Biol. Intern. 20, 579–587.

    Article  CAS  Google Scholar 

  36. Edwards, M. K. S., Harris, J. F., and McBurney, M. W. (1983) Induced muscle differentiation in an embryonal carcinoma cell line. Mol. Cell Biol. 3, 2280–2286.

    PubMed  CAS  Google Scholar 

  37. Jones-Villeneuve, E. M. V., Rudnicki, M. A., Harris, J. F., and McBurney, M. W. (1983) Retinoic acid induced neural differentiation of embryonal carcinoma cells. Mol. Cell Biol. 3, 2271–2279.

    PubMed  CAS  Google Scholar 

  38. Chomczynski, P. and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  39. Wong, H., Anderson, W. D., Cheng, T., and Riabowol, K. T. (1994): Monitoring mRNA expression by polymerase chain reaction: the “primer-dropping” method. Analyt. Biochem. 223, 251–258.

    Article  PubMed  CAS  Google Scholar 

  40. Isenberg, G. and Klöckner, U. (1982) Calcium-tolerant ventricular myocytes prepared by preincubation in a “KB medium”. Pflügers Arch. 395, 6–18.

    Article  PubMed  CAS  Google Scholar 

  41. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, J. (1981) Improved patch-clamp technique for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391, 85–100.

    Article  PubMed  CAS  Google Scholar 

  42. Hille, B. (1992) Ionic Channels and Excitable Membranes, 2nd Ed, Sinauer Associates, Sunderland, MA.

    Google Scholar 

  43. Rohwedel, J., Horak, V., Hebrok, M., et al. (1995) M-twist expression inhibits embryonic stem cell-derived myogenic differentiation in vitro. Exp. Cell Res. 220, 92–100.

    Article  PubMed  CAS  Google Scholar 

  44. Stewart, C. L., Gadi, I., and Bhatt, H. (1994) Stem cells from primordial germ cells can reenter the germ line. Dev. Biol. 161, 626–628.

    Article  PubMed  CAS  Google Scholar 

  45. Smith, A. G., Heath, J. K., Donaldson, D. D., et al. (1988) Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688–690.

    Article  PubMed  CAS  Google Scholar 

  46. Smith, D. B. and Johnson, K. S. (1988) Single-step purification of polypep-tides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67, 31–40.

    Article  PubMed  CAS  Google Scholar 

  47. Gearing, D. P., Nicola, N. A., Metcalf, D., et al. (1989) Production of leukemia inhibitory factor in Escherichia coli by a novel procedure and its use in maintaining embryonic stem cells in culture. Biotechnology 7, 1157–1161.

    CAS  Google Scholar 

  48. Myers, T. W. and Gelfand, D. H. (1991) Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase. Biochemistry 30, 7661–7666.

    Article  PubMed  CAS  Google Scholar 

  49. Solter D. and Knowles B. B. (1978) Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc. Natl. Acad. Sci. USA 75, 5565–5569.

    Article  PubMed  CAS  Google Scholar 

  50. Kemler, R., Brûlet, P., Schnebelen, M.-T., et al. (1981) Reactivity of monoclonal antibodies against intermediate filament proteins during embryonic development. J. Embryol. Exp. Morphol. 64, 45–60.

    PubMed  CAS  Google Scholar 

  51. MacDonald, D. J. and Kelly, A. M. (1978) The rapid quantitation of serum alpha-fetoprotein by two site micro enzyme immunoassay. Clin. Chim. Acta 87, 367–372.

    Article  PubMed  CAS  Google Scholar 

  52. Jacobsen G. K., Jacobsen, M., and Clausen, P.P. (1981) Distribution of tumor-associated antigens in the various histologic components of germ cell tumors of the testis. Am. J. Surg. Pathol. 5, 257–266.

    Article  PubMed  CAS  Google Scholar 

  53. Debus E., Weber K., and Osborn M. (1983) Monoclonal antibody to desmin, the muscle specific intermediate filament protein. EMBO J. 2, 2305–2312.

    PubMed  CAS  Google Scholar 

  54. Fürst, D. O., Osborn, M., Nave, R., and Weber, K. (1988) The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunelectron microscopy: a map of the nonrepetitive epitopes starting at the Z-line extends close to the M-line. J. Cell Biol. 106, 1563–1572.

    Article  PubMed  Google Scholar 

  55. Bader, D., Masaki, T., and Fischman, D.A. (1982) Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J. Cell Biol. 95, 763–770.

    Article  PubMed  CAS  Google Scholar 

  56. Skalli, O., Gabbiani, G., Babai, F., et al. (1988) Intermediate filament proteins and actin isoforms as markers for soft tissue tumor differentiation and origin. II. Rhabdomyosarcomas. Amer. J. Pathol. 130, 515–531.

    CAS  Google Scholar 

  57. Adams J. C. and Watt, F. M. (1988) An unusual strain of human keratinocytes which do not stratify or undergo terminal differentiation in culture. J. Cell Biol. 107, 1927–1938.

    Article  PubMed  CAS  Google Scholar 

  58. Wiedenmann, B. and Franke, W. W. (1985) Identification and localization of synaptophysin. An integral membrane glycoprotein of Mr 38.000 characteristic of presynaptic vesicles. Cell 41, 1017–1028.

    Article  PubMed  CAS  Google Scholar 

  59. Skalli, O., Ropraz, P., Trzeciak, A., et al. (1986) A monoclonal antibody against a-smooth muscle actin: A new probe for smooth muscle differentiation. J. Cell Biol. 103, 2787–2796.

    Article  PubMed  CAS  Google Scholar 

  60. Naumann, K. and Pette, D. (1994) Effects of chronic stimulation with different impulse patterns on the expression of myosin isoforms in rat myotube cultures. Differentiation 55, 203–211.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Wobus, A.M., Guan, K., Pich, U. (2001). In Vitro Differentiation of Embryonic Stem Cells and Analysis of Cellular Phenotypes. In: Tymms, M.J., Kola, I. (eds) Gene Knockout Protocols. Methods in Molecular Biology, vol 158. Humana Press. https://doi.org/10.1385/1-59259-220-1:263

Download citation

  • DOI: https://doi.org/10.1385/1-59259-220-1:263

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-572-0

  • Online ISBN: 978-1-59259-220-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics