Skip to main content

Methods to Study Phosphorylation and Activation of the Hormone-Sensitive Adipocyte Phosphodiesterase Type 3B in Rat Adipocytes

  • Protocol
Adipose Tissue Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 155))

  • 2066 Accesses

Abstract

Cyclic nucleotide phosphodiesterases (PDEs) include a large group of structurally related enzymes that are responsible for the hydrolysis of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). These enzymes belong to at least nine related gene families (PDEs 1–9) (15), which differ in their primary structures, affinities for cAMP and cGMP, responses to specific effectors, sensitivities to specific inhibitors, and regulatory mechanisms. The PDE3 family (6) consists of two subfamilies, PDE3A and PDE3B, which exhibit tissue-specific distribution; grossly, PDE3A enzymes are expressed in the cardiovascular system, and PDE3B enzymes in insulin-sensitive cells, such as hepatocytes (7) and adipocytes (6), and also in pancreatic β-cells (8). One characteristic of PDE3s involves their phosphorylation and activation in response to insulin, as well as to agents that increase cAMP in adipocytes (6), hepatocytes (7), and platelets (911), and in response to insulin-like growth factor-1 (IGF-)1 in pancreatic β-cells (8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manganiello, V. C., Murata, T., Taira, M., Belfrage, P., and Degerman, E. (1995) Perspectives in biochemistry and biophysics, Diversity in cyclic nucleotide phosphodiesterase isoenzyme families. Arch. Biochem. Biophy. 322, 1–13.

    Article  CAS  Google Scholar 

  2. Conti, M., Nemos, G., Sette, C., and Vicini, E. (1995) Recent progress in understanding the hormonal regulation of phosphodiesterases. Endocrine Rev. 16, 370–389.

    CAS  Google Scholar 

  3. Beavo, J. (1995) Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol. Rev. 75, 725–748.

    PubMed  CAS  Google Scholar 

  4. Fischer, D. A., Smith, J. F., Pillar, J. S., St. Dennis, S. H., and Cheng, J. B. (1998) Isolation and characterization of of PDE9A, a novel cGMP specific phosphodiesterase. J. Biol. Chem. 273, 15,559–15,564.

    Article  Google Scholar 

  5. Soderling, S. H., Bayuga, S. J., and Beavo, J. A. (1998) Identification and characterization of novel family of cyclic nucleotide phosphodiesterases. J. Biol. Chem. 273, 15,553–15,558.

    Article  PubMed  CAS  Google Scholar 

  6. Degerman, E., Belfrage, P., and Manganiello, V. (1997) Minireview: Structure, localization and regulation of cGMP-inhibited phosphodiesterase (PDE3). J. Biol. Chem. 272, 6823–6826.

    Article  PubMed  CAS  Google Scholar 

  7. Houslay, M. D. and Kilgour, E. (1990) Cyclic nucleotide phosphodiesterases in liver: A review of their characterization, regulation by insulin and glucagon and their role in controlling intracellular cyclic AMP concentration, in Cyclic Mucleotide Phosphodiesterases: Structure, Regulation and Drug Action. (Beavo, J. A. and Houslay, M. D., eds.), Wiley, Chichester, UK, pp. 185–224.

    Google Scholar 

  8. Zhao, A. Z., Zhao H., Teague, J., Fujimoto, W., and Beavo, J. A. (1997) Attenuation of insulin secretion by insulin-like growth factor 1 is mediated through activation of phosphodiesterase 3B. Proc. Natl. Acad. Sci. USA 94, 3223–3228.

    Article  PubMed  CAS  Google Scholar 

  9. Grant P. G., Mannarino A. F., and Colman R. W. (1988) cAMP mediated phosphorylation of the low-Km cAMP phosphodiesterase markedly stimulates its catalytic activity. Proc. Nat. Acad. Sci. USA 85, 9071–9075.

    Article  PubMed  CAS  Google Scholar 

  10. Lopez-Aparicio, P., Rascón, A., Manganiello, V. C., Andersson, K. E., Belfrage, P., and Degerman, E. (1992) Insulin induces phosphorylation and activation of the cGMP-inhibited cAMP phosphoodiesterase in human platelets. Biochem. Biophys. Res. Commun. 186, 517–523.

    Article  PubMed  CAS  Google Scholar 

  11. Macphee, C. H., Reifsnyder, D. H., Moore, T. A., Levea, K. M., and Beavo, J. A. (1988) Phosphorylation results in activation of a cAMP phosphodiesterase in human platelets. J. Biol. Chem. 263, 10,353–10,358.

    PubMed  CAS  Google Scholar 

  12. Degerman, E., Smith, C. J., Tornqvist, H., Vasta, V., Manganiello, V., and Belfrage, P. (1990) Evidence that insulin and isoprenaline activate the cGMP inhibited low Km cAMP-phosphodiesterase in fat cells by phosphorylation. Proc. Natl. Acad. Sci. USA 87, 533–537.

    Article  PubMed  CAS  Google Scholar 

  13. Smith, C. J., Vasta, V., Degerman, E., Belfrage, P., and Manganiello, V. (1991) Hormone-sensitive cyclic GMP-inhibited cyclic AMP phosphodiesterase in rat adipocytes. J. Biol. Chem. 266, 13,385–13,390.

    PubMed  CAS  Google Scholar 

  14. Rahn, T., Rönnstrand, L., Wernstedt, C., Leroy, M.-J., Tornqvist, H., Manganiello, V., Belfrage, P., and Degerman, E. (1996) Identification of the site in the cGMP inhibited phosphodiesterase phosphorylated in adipocytes in response to insulin and isoproterenol. J. Biol. Chem. 271, 11,575–11,580.

    Article  PubMed  CAS  Google Scholar 

  15. Holm, C., Langin, D., Manganiello, V., Belfrage, P., and Degerman, E. (1997) Regulation of hormone-sensitive lipase activity in adipose tissue, in Methods of Enzymology (Rubin, B. and Dennis, E. A., eds.), Academic Press, pp. 45–67.

    Google Scholar 

  16. Rahn, T., Ridderstråle, M., Tornqvist, H., Manganiello, V., Fredrikson, G., Belfrage, P., and Degerman, E. (1994) Essential role of phosphatidylinositol 3-kinase in insulin-induced activation and phosphorylation of the cGMP-inhibited cAMP phosphodiesterase in rat adipocytes. FEBS Lett. 350, 314–318.

    Article  PubMed  CAS  Google Scholar 

  17. Wijkander, J., mnStenson Holst, L., Rahn, T., Resjö, S., Castan, I., Manganiello, V., Belfrage, P., and Degerman, E. (1997) Regulation of protein kinase B in rat adipocytes by insulin, vanadate and peroxovanadate. Membrane translocation in response to peroxovanadate. J. Biol. Chem. 272, 21,520–21,526.

    Google Scholar 

  18. Wijkander, J., mnRahn Landström, T., Manganiello, V., Belfrage, P., and Degerman, E. (1998) A possible role for protein kinase B but not mitogen-activated protein kinases and p70 S6 kinase in insulin-induced phosphorylation and activation of phosphodiesterase 3B in adipocytes. Endocrinology 139, 219–227.

    Google Scholar 

  19. Ahmad, F., Cong, L-N., mnStenson Holst, L., Wang, L-M., Pierce, J., mnRahn Landström, T., Quon, M., Degerman, E., and Manganiello, V. (2000) Cyclic nucleotide phosphodiesterase 3B is a downstream target of protein kinase B and may be involved in regulation of effects of protein kinase B on thymidine incorporation of FDCPZ cells. J. Immunol. 164, 4678–4688.

    Google Scholar 

  20. Resjö, S., Zolnierowicz, S., Manganiello, V., Belfrage, P., and Degerman, E. (1999) Phosphorylation and activation of phosphodiesterase 3B in adipocytes in response to phosphatase inhibitors. Biochem. J. 341, 839–845.

    Article  PubMed  Google Scholar 

  21. Rodbell, M. (1964) Metabolism of isolated fat cells. J. Biol. Chem. 239, 375–380.

    PubMed  CAS  Google Scholar 

  22. Honnor, R. C., Dhillon, G. S., and Londos, C. (1985) cAMP-dependent protein kinase and lipolysis in rat adipocytes. J. Biol. Chem. 260, 15,122–15,129.

    PubMed  CAS  Google Scholar 

  23. Hopkirk, T. J. and Denton, R. M. (1986) Studies on the specific activity of [γ-32P]-ATP in adipose tissue and other tissue preparations incubated with medium containing [32P]phosphate. Biochim. Biophys. Acta. 885, 195–205.

    Article  PubMed  CAS  Google Scholar 

  24. Rascón, A., Degerman, E., Taira, M., Meacci, E., Smith, C. J., Manganiello, V., Belfrage, P., and Tornqvist, H. (1994) Identification of the phosphorylation site in vitro for cAMP dependent protein kinase on the rat adipocyte cGMP-inhibited cAMP phosphodiesterase. J. Biol. Chem. 269, 11,962–11,966.

    PubMed  Google Scholar 

  25. Leroy, M-J., Degerman, E., Taira, M., Wang, L-H., Movsesian, M., Murata, T., Meacci, E., and Manganiello, V. (1996) Characterization of two recombinant PDE3 (cGMP-inhibited cyclic nucleotide phosphodiesterase) isoforms, RcGIP1 and HcGIP2, expressed in NIH 3006 murine fibroblasts and Sf9 insectscells. Biochemistry 35, 10,194–10,202.

    Article  PubMed  CAS  Google Scholar 

  26. Kincaid, R. L. and Manganiello, V. C. (1988) Assay of cyclic nucleotide phosphodiesterase using radiolabelled and fluorescent substrate. Methods Enzymol. 159, 457–471.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Degerman, E., Resjö, S., Landström, T.R., Manganiello, V. (2001). Methods to Study Phosphorylation and Activation of the Hormone-Sensitive Adipocyte Phosphodiesterase Type 3B in Rat Adipocytes. In: Ailhaud, G. (eds) Adipose Tissue Protocols. Methods in Molecular Biology™, vol 155. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-231-7:167

Download citation

  • DOI: https://doi.org/10.1385/1-59259-231-7:167

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-747-2

  • Online ISBN: 978-1-59259-231-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics