Skip to main content

Measurements of Peptide and Nonpeptide Secretory Products from Adipocytes

  • Protocol
Adipose Tissue Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 155))

  • 2039 Accesses

Abstract

In addition to their metabolic function of storing triglycerides and releasing free fatty acids upon hormonal stimulation, adipocytes are now recognized as behaving as secretory cells. During the past 10 yr, an increasing number of peptidic and nonpeptidic compounds have been demonstrated to be secreted by adipocytes (1). Most of these compounds are thought to exert primarily, and in an autocrine/paracrine manner, local effects that modulate adipose cell hypertrophy and/or hyperplasia of adipose tissue (AT). This is essentially the case for short-living molecules, such as the prostanoid, prostacyclin (PGI2), which is discussed in this chapter. Some of these secreted factors, like leptin (see Chapter 26), allow communication with other peripheral tissues and the central nervous system, giving to the adipocyte the status of an endocrine cell. In addition, some of these factors may contribute to the development of morbid complications of obesity, i.e., cardiovascular diseases, hypertension, insulin-resistance, diabetes, and cancer (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Négrel, R. (1999) Paracrine/autocrine signals and adipogenesis, in Progress in Obesity Research (Guy-Grand, B. and Ailhaud, G., eds.), John Libbey, London, UK, pp. 55–63.

    Google Scholar 

  2. Arner, P. (1999) Physiopathology of visceral adipose tissue, in Progress in Obesity Research (Guy-Grand, B. and Ailhaud, G., eds.), John Libbey, London, UK, pp. 567–572.

    Google Scholar 

  3. Lee., M. A., Bohm, M., Paul, M., and Ganten, D. (1993) Tissue renin-angiotensinogen systems. Their role in cardiovascular disease. Circulation 87, 7–13.

    Google Scholar 

  4. Saye, J. A., Ragsdale, N. V., Carey, R. M., and Peach, M. J. (1993) Localization of angiotensinogen peptide-forming enzymes of 3T3-F442A adipocytes. Am. J. Physiol. 264, C1570–C1576.

    PubMed  CAS  Google Scholar 

  5. Crandall, D. L., Herzlinger, H. E., Saunders, B. D., and Kral, J. G. (1994) Development aspects of the adipose tissue renin-angiotensin system: therapeutic implications. Drug Dev. Res. 32, 117–125.

    Article  CAS  Google Scholar 

  6. Harp, J. B. and DiGirolamo, M. (1995) Components of the renin-angiotensin system in adipose tissue: changes with maturation and adipose mass enlargement. J. Gerontol. Biol. Sci. Med. Sci. 50, B270–B276.

    Article  CAS  Google Scholar 

  7. Schling, P., Mallow, H., Trindl, A., and Löffler, G. (1999) Evidence for a local renin angiotensin system in primary cultured human preadipocytes. Int. J. Obes. 23, 336–341.

    Article  CAS  Google Scholar 

  8. Rocchini, A. P. (1991) Insulin resistance and blood pressure regulation in obese and nonobese subjects. Hypertension 17, 837–842.

    PubMed  CAS  Google Scholar 

  9. Darimont, C., Vassaux, G., Ailhaud, G., and Négrel, R. (1994) Differentiation of preadipose cells: paracrine role of prostacyclin upon stimulation of adipose cells by angiotensin II. Endocrinology 135, 2030–2036.

    Article  PubMed  CAS  Google Scholar 

  10. Zorad, S., Fickova, M., Zelezna, B., Macho, J., and Kral, J. G. (1995) The role of angiotensin II and its receptors in regulation of adipose tissue metabolism and cellularity. Gen. Physiol. Biophys. 14, 383–391.

    PubMed  CAS  Google Scholar 

  11. Jones, B. H., Standridge, M. K., and Moustaid, N. (1997) Angiotensin II increases lipogenesis in 3T3-L1 and human adipose cells. Endocrinology 138, 1512–1519.

    Article  PubMed  CAS  Google Scholar 

  12. Van Meijer, M. and Pannekoek, H. (1995) Structure of plasminogen activator inhibitor 1 (PAI-1) and its function in fibrinolysis: an update. Fibrinolysis 9, 263–276.

    Article  Google Scholar 

  13. Erickson, L. A., Fici, G. J., Lund, J. E., Boyle, T. P., Polites, H. G., and Marotti, K. R. (1990) Development of venous occlusions in mice transgenic for the PAI-1 gene. Nature 346, 74–76.

    Article  PubMed  CAS  Google Scholar 

  14. Carmeliet, P., Stassen, J. M., Schoonjans, L., Ream, B., Van den Oord, J. J., De Mol, M., Mulligan, R. C., and Collen, D. (1993) Plasminogen activator inhibitor 1 gene deficient mice. II. Effects on hemostasis thrombosis and thrombolysis. J. Clin. Invest. 92, 2756–2760.

    Article  PubMed  CAS  Google Scholar 

  15. Hamsten, A., De Faire, U., Walldius, G., Dahlen, G., Szamosi, A., Landou, C., Blombäck, M., and Wiman, B. (1987) Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction. Lancet II, 3.

    Article  Google Scholar 

  16. Juhan-Vague, I., Pyke, S., Alessi, M. C., and Thompsom, S. (1996) Fibrinolytic factor and the risk of myocardial infarction of sudden death in patients with angina pectoris: results of ECAT study. Circulation 94, 2057–2063.

    PubMed  CAS  Google Scholar 

  17. Juhan-Vague, I., Alessi, M. C., and Morange, P. (1999) Obesity and insulin resistance, in Contemporary Endocrinology Insulin Resistance (Reaven, G. and Laws, A., eds.), Humana Press Inc., Totowa, NJ, pp. 317–332.

    Google Scholar 

  18. Samad, F., Yamamoto, K., Pandey, M., and Loskutoff, D. (1997) Elevated expression of transforming growth factor-b in adipose tissue from obese mice. Mol. Med. 3, 36–47.

    Google Scholar 

  19. Morange, P. E., Aubert, J., Peiretti, F., Lijnen, H. R., Vague, P., Verdier, M., Negrel, R., Juhan-Vague, I., and Alessi, M. C. (1999) Glucocorticoids and insulin promote plasminogen activator inhibitor 1 production by human adipose tissue. Diabetes 48, 890–895.

    Article  PubMed  CAS  Google Scholar 

  20. Shimomura, I., Funahashi, T., Takahashi, M., Maeda, K., Kotani, K., Nakamura, T., Yamashita, S., Miura, M., Fukuda, Y., Takemujra, K., Tokunaga, K., and Matsuzawa, Y. (1996) Enhanced expression of PAI-1 in visceral fat possible contributor to vascular disease in obesity. Nat. Med. 2, 800–803.

    Article  PubMed  CAS  Google Scholar 

  21. Eriksson, P., Reynisdottir, S., Lönnqvist, F., Stemme, V., and Arner, P. (1998) Adipose tissue secretiion of plasminogen activator inhibitor-1 in non obese individuals. Diabetologia 41, 65–71.

    Article  PubMed  CAS  Google Scholar 

  22. Lundgren, C. H., Brown, S. L., Nordt, T. K., Sobel, B. E., and Fujii, S. (1996) Elaboration of type 1 Plasminogen Activator inhibitor from adipocytes: a potential pathogenetic link between obesity and cardiovascular disease. Circulation 93, 106–110.

    PubMed  CAS  Google Scholar 

  23. Richelsen, B. (1991) Prostaglandins in adipose tissue. Danish Med. Bull. 38, 228–244.

    PubMed  CAS  Google Scholar 

  24. Vassaux, G., Gaillard, D., Darimont, C., Ailhaud, G., and Négrel, R. (1992) Differential response of preadipocytes and adipocytes to PGI2 and PGE2: physiological implications. Endocrinology 131, 2393–2398.

    Article  PubMed  CAS  Google Scholar 

  25. Kiriyama, M., Ushikubi, F., Kobayashi, T., Hirata, M. Sugimoto, Y., and Narumiya, S. (1997) Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chines hamster ovary cells. Br. J. Pharmacol. 122, 217–224.

    Article  PubMed  CAS  Google Scholar 

  26. Börglum, J. D., Pedersen, S. B., Ailhaud, G., Négrel, R., and Richelsen, B. (1999) Differential expression of prostaglandin receptor mRNAs during adipose cell differentiation. Prostaglandins Other Lipid Mediators 57, 305–317.

    Article  PubMed  Google Scholar 

  27. Weksler, B. B., Marcus, A. J., and Jaffe, E. A. (1977) Synthesis of prostaglandin I2 (prostacyclin) by cultured human and bovine endothelial cells. Proc. Natl. Acad. Sci. USA 74, 3922–3926.

    Article  PubMed  CAS  Google Scholar 

  28. Négrel, R. and Ailhaud, G. (1981) Metabolism of arachidonic acid and prostaglandin synthesis in the preadipocyte clonal line Ob 17. Biochem. Biophys. Res. Commun. 98, 768–777.

    Article  PubMed  Google Scholar 

  29. Hyman, B. T., Stoll, L. L., and Spector, A. A. (1982) Prostaglandin production by 3T3-L1 cells in culture. Biochim. Biophys. Acta 713, 375–385.

    PubMed  CAS  Google Scholar 

  30. Axelrod, L., Minnich, A. K., and Ryan, C. A. (1985) Stimulation of prostacyclin production in isolated rat adipocytes by angiotensin II, vasopressin and bradikinin: evidence for two separate mechanisms of prostaglandin synthesis. Endocrinology 116, 2548–2553.

    Article  PubMed  CAS  Google Scholar 

  31. Négrel, R. (1999) Prostacyclin as a critical prostanoid in adipogenesis. Prostaglandins Leukotrienes Essential Fatty Acids 60, 383–386.

    Article  Google Scholar 

  32. Gaillard, D., Négrel, R., Lagarde, M., and Ailhaud, G. (1989) Requirement and role of arachidonic acid in the differentiation of preadipose cells. Biochem. J. 257, 389–397.

    PubMed  CAS  Google Scholar 

  33. Négrel, R., Gaillard, G., and Ailhaud, G. (1989) Prostacyclin as a potent effector of adipose cell differentiation. Biochem. J. 257, 399–405.

    PubMed  Google Scholar 

  34. Vassaux, G., Gaillard, D., Ailhaud, G., and Négrel, R. (1992) prostacyclin is a specific effector of adipose cell differentiation: its dual role as a cAMP-and Calcium-elevating agent. J. Biol. Chem. 267, 11,092–11,097.

    PubMed  CAS  Google Scholar 

  35. Catalioto, R. M., Gaillard, D., Maclouf, J. Ailhaud, G., and Négrel, R. (1991) Autocrine control of adipose cell differentiation by prostacyclin and PGF. Biochim. Biophys. Acta 1091, 364–369.

    Article  PubMed  CAS  Google Scholar 

  36. Aubert, J., Ailhaud, G., and Négrel, R. (1996) Evidence for a novel regulatory pathway activated by (carba)prostacyclin in preadipose and adipose cells. FEBS Lett. 397, 117–121.

    Article  PubMed  CAS  Google Scholar 

  37. Forman, B. M., Chen, J., and Evans, R. M. (1997) Hypolipidemic drugs, polyunsaturated fatty acids and eicosanoids are ligands for peroxisome proliferator-activated receptor. Proc. Natl. Acad. Sci. USA 94, 4312–4317.

    Article  PubMed  CAS  Google Scholar 

  38. Bastié, C., Holts, D., Gaillard, D. Jehl-Pietri, C., and Grimaldi, P. A. (1999) Expression of peroxisome proliferator-activated receptor PPARd promotes induction of PPARg and adipocyte differentiation in 3T3C2 fibroblasts. J. Biol. Chem. 274, 21,920–21,925.

    Article  PubMed  Google Scholar 

  39. Brun, R. P., Tontonoz, P., Forman, B. M., Ellis, R., Chen, J., Evans, R. M., and Spiegelman, B. M. (1996) Differential activation of adipogenesis by multiple PPAR isoforms. Genes Dev. 10, 974–984.

    Article  PubMed  CAS  Google Scholar 

  40. Jacobsen, J. and Poulsen, K. (1985) Characterization of angiotensin I, II and III from mouse as position-5 isoleucine angiotensins? An HPLC study. J. Hypertension 3, 155–157.

    Article  CAS  Google Scholar 

  41. Declerck, P. J., Moreau, H., Jespersen, J., Gram, J., and Kluft, C. (1993) Multicenter evaluation of commercially available methods for the immunological determination of plasminogen activator inhibitor 1 (PAI-1) Thromb. Haemost. 70, 858–863.

    CAS  Google Scholar 

  42. Kates, M., ed. (1986) Laboratory Techniques in Biochemistry and Molecular Biology. Techniques in Lipidology: Isolation, Analysis and Identification of Lipids. Elsevier, Amsterdam.

    Google Scholar 

  43. Sealey, J. E. and Laragh, J. H. (1975) Radioimmunoassay of plasma renin activity. Semin. Nucl. Med. 5, 189–202.

    Article  PubMed  CAS  Google Scholar 

  44. Aubert, J., Darimont, C., Safonova, I., Ailhaud, G., and Négrel, R. (1997) Regulation by glucocorticoids of angiotensin gene expression and secretion in adipose cells. Biochem. J. 328, 701–706.

    PubMed  CAS  Google Scholar 

  45. Juhan-Vague, I., Alessi, M. C., Raccah, D., Aillaud, M. F, Billerey M., Ansaldi J., Philip-Joet C., and Vague P. (1992) Daytime fluctuation of plasminogen activator inhibitor-1 (PAI-1) in populations with high PAI-1 levels. Thromb. Haemost., 67, 76–82.

    PubMed  CAS  Google Scholar 

  46. Hendriks, H. F., Veenstra, J., mnVelthuis-te Xierik, E. J. M., Schaafsma, G., and Kluft, C. (1994) Effect of moderate dose of alcohol with evening meal on fibrinolytic factors. Br. Med. J. 308, 1003–1006.

    Google Scholar 

  47. Kluft, C. and Verheijen, J. H. (1990) Leiden fibrinolysis working party: Blood collection and handling procedures for assessment of tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1) Fibrinolysis 4, 155–160.

    Article  CAS  Google Scholar 

  48. Booth, N. A., Simpson, A. J., Croll, A., Bennett, B., and mnMac Gregor, I. R. (1988) Plasminogen activator inhibitor (PAI-1) in plasma and platelets. Br. J. Haematol. 70, 327–333.

    Google Scholar 

  49. Sidelmann, J. (1994) The influence of centrifugation load on platelet number and PAI-1 antigen concentration in human plasma. Fibrinolysis 8, 148–150.

    Article  CAS  Google Scholar 

  50. Kooistra, T., Sprengers, E. D., and van Hinsbergh, V. W. M. (1986) Rapid inactivation of plasminogen activator inhibitor upon secretion from cultured human endothelial cells. Biochem. J. 239, 497–503.

    PubMed  CAS  Google Scholar 

  51. Sawdey, M. and Loskutoff, D. J. (1991) Regulation of murine type 1 plasminogen activator inhibitor gene expression in vivo. Tissue specificity and induction by lipopolysaccharide, tumor necrosis factor-a, and transforming growth factor-b. J. Clin. Invest. 88, 1346–1353.

    Article  PubMed  CAS  Google Scholar 

  52. Declerck, P. J., Verstreken, M., and Collen, D. (1995) Immunoassay of murine t-PA, u-PA and PAI-1 using monoclonal antibodies raised in gene-inactivated mice. Thromb. Haemost. 74, 1305–1309.

    PubMed  CAS  Google Scholar 

  53. Ngo, T. H., Verheyen, S., Knockaert, I., and Declerck, P. J. (1998) Monoclonal antibody-based immunoassays for the specific quantitation of rat PAI-1 antigen and activity in biological samples. Thromb. Haemost. 79, 808–812.

    PubMed  CAS  Google Scholar 

  54. Granelli-Piperno, A. and Reich, E. (1978) A study of proteases and protease-inhibitor complexes in biological fluids. J. Exp. Med. 148, 223–234.

    Article  PubMed  CAS  Google Scholar 

  55. Hauert, J., Nicoloso, G., Schleuning, W. D., Bachmann F., and Schapira, M. (1989) Plasminogen activators in dextran-sulfate activated euglobulin fractions: a molecular analysis of factor XII and prekallikrein dependent fibrinolysis. Blood 73, 994–999.

    PubMed  CAS  Google Scholar 

  56. Erickson, L. A., Lawrence, D. A., and Loskutoff, D. J. (1984) Reverse fibrin autography: a method to detect and partially characterize protease inhibitors after sodium dodecyl sulfate polyacrylamide gel electrophoresis. Anal. Biochem. 137, 454–463.

    Article  PubMed  CAS  Google Scholar 

  57. Cajot, J. F., Kruithof, E. K. O., Schleuning, W. D., Sordat, B., and Bachmann, F. (1986) Plasminogen activator, plasminogen activator inhibitors and procoagulant analyzed in twenty human tumor cell lines. Int. J. Cancer. 38, 719–727.

    Article  PubMed  CAS  Google Scholar 

  58. Laemlli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  Google Scholar 

  59. Gaillard, D., Wabitsch, M., Pipy, B., and Négrel, R. (1991) Control of terminal differentiation of adipose precursor cells by glucocorticoids. J. Lipid Res. 32, 569–579.

    PubMed  CAS  Google Scholar 

  60. Darimont, C., Vassaux, G., Gaillard, D., Ailhaud, G., and Négrel, R. (1994) In situ microdialysis of prostaglandins in adipose tissue: stimulation of prostacyclin release by angiotensin II. Int. J. Obes. 18, 783–788.

    CAS  Google Scholar 

  61. Bligh, E. G. and Dyer, W. J. (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917.

    Article  PubMed  CAS  Google Scholar 

  62. Powell, W. S. (1982) Rapid extraction of arachidonic acid metabolites from biological samples using octadecylsilyl silica. Methods Enzymol. 86, 467–477.

    Article  PubMed  CAS  Google Scholar 

  63. N#x00E9;grel, R., Grimaldi, P., and Ailhaud, G. (1981) Differentiation of Ob17 preadipocytes to adipocytes. Effects of prostaglandinF2a and relationship to prostaglandin synthesis. Biochim. Biophys. Acta. 666, 15–24.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Alessi, MC., Aubert, J., Négrel, R. (2001). Measurements of Peptide and Nonpeptide Secretory Products from Adipocytes. In: Ailhaud, G. (eds) Adipose Tissue Protocols. Methods in Molecular Biology™, vol 155. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-231-7:249

Download citation

  • DOI: https://doi.org/10.1385/1-59259-231-7:249

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-747-2

  • Online ISBN: 978-1-59259-231-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics