Skip to main content

Use of Inteins for the In Vivo Production of Stable Cyclic Peptide Libraries in E. coli

  • Protocol
E. coliGene Expression Protocols

Abstract

Advances and opportunities in drug discovery and functional genomics have put methods for generating molecular diversity at a premium. Both chemical and biological approaches for the production of compound libraries have been pursued. Combinatorial chemistry has been used to synthesize molecular libraries in vitro, while molecular biology has been exploited to biosynthesize molecular libraries within cells. Unlike synthetic methods, which have largely focused on the production of libraries of small molecules, biosynthetic libraries must contend with the catabolic machinery of the host cell. Thus, variable segments are typically embedded within or fused to large biomolecules (1). The resulting random sequences have been described as peptides, but they display the physical characteristic of the scaffold biopolymer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosamond, J. and Allsop, A. (2000) Harnessing the power of the genome in the search of new antibiotics. Science 287, 1973–1976.

    Article  PubMed  CAS  Google Scholar 

  2. Gururaja, T. L., Narasimhamurthy, S., Payan, D. G., and Anderson, D. C. (2000) A novel artificial loop scaffold for the noncovalent constraint of peptides. Chem. Biol. 7, 515–527.

    Article  PubMed  CAS  Google Scholar 

  3. Jermutus, L., Honegger, A., Schwesinger, F., Hanes, J., and Pluckthun, A. (2001) Tailoring in vitro evolution for protein affinity or stability. Proc. Natl. Acad. Sci. USA 98, 75–80.

    Article  PubMed  CAS  Google Scholar 

  4. Scott, C. P., Abel-Santos, E., Wall, M., Wahnon, D. C., and Benkovic, S. J. (1999) Production of cyclic peptides and proteins in vivo. Proc. Natl. Acad. Sci. USA 96, 13, 638–13, 643.

    Google Scholar 

  5. Perler, F. B. and Adam, E. (2000) Protein splicing and its applications. Curr. Opin. Biotechnol. 11, 377–383.

    Article  PubMed  CAS  Google Scholar 

  6. Evans T. C., Jr., Martin, D., Kolly, R., et al. (2000) Protein trans-splicing and cyclization by a naturally split intein from the DnaE gene of Synechocystis species PCC6803. J. Biol. Chem. 275, 9091–9094.

    Article  PubMed  CAS  Google Scholar 

  7. Iwai, H., Lingel, A., and Pluckthun, A. (2001) Cyclic green fluorescent protein produced in vivo using an artificially split PI-PfuI intein from Pyrococcus furiosus. J. Biol. Chem. 276, 16, 548–16, 554.

    Article  Google Scholar 

  8. Stern, B. and Gershoni, J. M. (1998) Construction and use of a 20-mer phage display epitope library in Methods in Molecular Biology: Combinatorialpeptide library protocols, (Cabilly, S., ed.), Humana Press, Totowa, NJ, Vol. 87, pp. 137–154.

    Google Scholar 

  9. Luzzago A., and Felici, F. (1998) Construction of disulfide constrained random peptide libraries displayed on phage coat protein VIII in Methods in Molecular Biology: Combinatorial peptide library protocols, (Cabilly, S. ed.), Humana Press, Totowa, NJ, Vol. 87, pp. 155–164.

    Google Scholar 

  10. Scott, C. P., Abel-Santos, E., Jones, A. D., and Benkovic, S. J. (2001) Structural requirements for the biosynthesis of backbone cyclic peptide libraries, Chem. Biol. 8, 801–815.

    Article  PubMed  CAS  Google Scholar 

  11. Seidman, C. E., Struhl, K., and Sheen, J. (1997) Short Protocols in Molecular Biology. 3rd edition, (Ausubel, F. M., Brent, R., Kingston, R. E., et al., eds.), John Wiley & Sons, New York, NY.

    Google Scholar 

  12. Sambrook, J., Fritsch, E. F., and Maniatis, I. (1989) Molecular Cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  13. Wu, H., Hu, Z., and Liu, X. Q. (1998) Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc. Natl. Acad. Sci. USA 95, 9226–9231.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Abel-Santos, E., Scott, C.P., Benkovic, S.J. (2003). Use of Inteins for the In Vivo Production of Stable Cyclic Peptide Libraries in E. coli . In: Vaillancourt, P.E. (eds) E. coliGene Expression Protocols. Methods in Molecular Biology™, vol 205. Humana Press. https://doi.org/10.1385/1-59259-301-1:281

Download citation

  • DOI: https://doi.org/10.1385/1-59259-301-1:281

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-008-3

  • Online ISBN: 978-1-59259-301-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics