Skip to main content

Analysis of Gene Promoter Regulation by Tumor Suppressor Genes

  • Protocol
Tumor Suppressor Genes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 223))

Abstract

Gene expression is controlled at several steps. Transcription is one of the important steps at which regulation occurs. Tumor suppressors such as p53, which are basically transcription factors, carry out their function primarily by the transcriptional activation of the target genes. The promoter region of a gene plays a major role in its transcriptional regulation, so it would be very useful for laboratories involved in the study of the tumor suppressor function to know the techniques used to analyze the regulation of gene promoters, particularly if they encode transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thompson, J. F., Hayes, L. S., and Lloyd, D. B (1993) Modulation of firefly luciferase stability and impact on studies of gene regulation. Gene 103, 171–177.

    Article  Google Scholar 

  2. De Wet, J. R., Wood, K. V., DeLuca, M., Helinski, D. R., and Subramani, S. (1987) Firefly luciferase gene: structure and expression in mammalian cells. Mol. Cell. Biol. 7, 725–737.

    PubMed  Google Scholar 

  3. Bronstein, I., Fortin, J., Stanley, P. E.,. Stewart, G. S., and Kricka, L. J. (1994) Chemiluminescent and bioluminescent reporter gene assays. Anal. Biochem. 219, 169–181.

    Article  PubMed  CAS  Google Scholar 

  4. Miller, J. (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  5. Young, D. C, Kingsley, S. D., Ryan, K. A., and Dutko F. J.(1993) Selective inactivation of eukaryotic B-galactosidase in assays for inhibitors of HIV-1 TAT using bacterial B-galactosidase as a reporter enzyme. Anal. Biochem. 215, 24–30.

    Article  PubMed  CAS  Google Scholar 

  6. Jain, V and Magrath, I. (1991) A chemiluminescent assay for quantitation of β-galactosidase in the femtogram range: application to quantitation of β-galactosidase in lacZ transfected cells. Anal. Biochem. 199, 119–124.

    Article  PubMed  CAS  Google Scholar 

  7. Berger, J., Hauber, J., Hauber, R., Geiger, R, and Cullen B. R. (1988) Secreted placental alkaline phosphatase: a powerful new quantitative indicator of gene expression in eukaryotic cells. Gene 66, 1–10.

    Article  PubMed  CAS  Google Scholar 

  8. Selden, R. F., Howie, K. B., Rowe, M. E., Goodman, H. M., and Moore, D. D. (1986) Human growth hormone as a reporter gene in regulation studies employing transient gene expression. Mol. Cell. Biol. 6, 3173–3179.

    PubMed  CAS  Google Scholar 

  9. Inouye, S. and Tsuji, F. I. (1994) Aequorea green fluorescent protein: expression of the gene and fluorescence characteristics of the recombinant protein. FEBS Lett. 341, 277–280.

    Article  PubMed  CAS  Google Scholar 

  10. Gorman, C. M., Moffat, L. F., and Howard B. H.(1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell Biol. 2, 1044–1051.

    PubMed  CAS  Google Scholar 

  11. Bradford M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  12. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  13. Laiminis, L. A., Gruss, P., Pozzatti, R, and Khoury, G. (1984) Characterization of enhancer elements in the long terminal repeat of Moloney murine sarcoma virus. J. Virol. 49, 183–189.

    Google Scholar 

  14. Gilman, M. Z., Wilson, R. N, and Weinberg, R. A (1986) Multiple protein binding sites in 5′-flanking region regulate c-fos expression. Mol. Cell. Biol. 6, 4305–4316.

    PubMed  CAS  Google Scholar 

  15. Nordeen, S. K. (1988) Luciferase reporter gene vector for analysis of promoters and enhancers. Biotechniques 6, 454–457.

    PubMed  CAS  Google Scholar 

  16. Luckow, B. and SchĂĽtz, G. (1987) CAT constructions with multiple unique sites for functional analysis of eukaryotic promoters and regulatory elements. Nucleic Acids Res. 15, 5490.

    Article  PubMed  CAS  Google Scholar 

  17. Vaheri, A. and Pagano, J. S. (1965) Infectious poliovirus RNA: a sensitive method of assay. Virology 27, 434–436.

    Article  PubMed  CAS  Google Scholar 

  18. Graham, F. L. and van der Eb, A. J. (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52, 456–467.

    Article  PubMed  CAS  Google Scholar 

  19. Felgner, P. L., Gadek, T. R., Holm, M., et al. (1987) Lipofectin: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci USA 84, 7413–7417.

    Article  PubMed  CAS  Google Scholar 

  20. Sambrook, J., Fritsch E. F., and Maniatis, T. (eds.) (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  21. Ausubel, F. M., Brent, R., Kingston, R. E., et al. (eds.) (1994) Current Protocols in Molecular Biology. Wiley, New York.

    Google Scholar 

  22. El-Deiry, W S., Tokino, T, Velculescu, V E., et al. (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825.

    Article  PubMed  CAS  Google Scholar 

  23. El-Diery, W S., Tokino, T, Waldman, T, et al. (1995) Topological control of p21WAF1/CIP1 expression in normal and neoplastic tissues. Cancer Res. 55, 2910–2919.

    Google Scholar 

  24. Hollander, M. C, Alamo, I., Jackman, J., Wang, M. G., McBride, O. W and Fornace, A. C, Jr. (1993) Analysis of the mammalian gadd45 gene and its response to DNA damage. J. Biol. Chem. 268, 24385–24393.

    PubMed  CAS  Google Scholar 

  25. Miyashita, T. and Reed J. C. (1995) Tumor suppressor p53 is a direct transcriptional activator of human bax gene. Cell 80, 293–299.

    Article  PubMed  CAS  Google Scholar 

  26. Seol, D., Chen, Q., Smith, M. L., and Zarnegar, R. (1999) Regulation of the c-met proto-oncogene promoter by p53. J. Biol. Chem. 274, 3565–3572.

    Article  PubMed  CAS  Google Scholar 

  27. Morris, G. F., Bischoff, J. R., and Mathews, M. B. (1996) Transcriptional activation of the human proliferating-cell nuclear antigen promoter by p53. Proc. Natl. Acad. Sci. USA 93, 895–899.

    Article  PubMed  CAS  Google Scholar 

  28. Buckbinder, L., Talbott, R., Velasco-Miguel, S., et al. (1995) Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 377, 646–649.

    Article  PubMed  CAS  Google Scholar 

  29. Takimoto, R. and El-Deiry, W. S. (2000) Wild-type p53 transactivates the KILLER/DR5 gene through an intronic sequence-specific DNA-binding site. Oncogene 19, 1735–1743.

    Article  PubMed  CAS  Google Scholar 

  30. Chin, Y. E., Kitagawa, M., Su, W. C., You, Z. H., Iwamoto, Y., and and Fu, X. Y. (1996) Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21 WAF1/CIP1 mediated by STAT1. Science 272, 719–722.

    Article  PubMed  CAS  Google Scholar 

  31. Zeng, Y. X., Somasundaram, K., and El-Diery, W. S.(1997) AP2 inhibits cancer growth and activates p21WAF1/CIP1 expression. Nat. Genet. 15, 78–82.

    Article  PubMed  CAS  Google Scholar 

  32. Kardassis, D., Papakosta, P., Pardali, K., and Moustakas, A. (1999) c-Jun transactivates the promoter of the human p21WAF1/Cip1 gene by acting as a superactivator of the ubiquitous transcription factor Sp1. J. Biol. Chem. 274, 29572–29581.

    Article  PubMed  CAS  Google Scholar 

  33. Moustakas, A. and Kardassis, D. (1998) Regulation of the human p21/WAF1/Cip1 promoter in hepatic cells by functional interactions between Sp1 and Smad family members. Proc. Natl. Acad. Sci. USA 95, 6733–6738.

    Article  PubMed  CAS  Google Scholar 

  34. Somasundaram, K., Zhang, H., Zeng, Y., et al. (1997) Arrest of the cell cycle by the tumor suppressor BRCA1 requires the CDK-inhibitor p21WAF1/Cip1. Nature 389, 187–190.

    Article  PubMed  CAS  Google Scholar 

  35. Datto, M. B., Yu, Y., and Wang, X. (1995) Fuctional analysis of the transforming growth factor β responsive elements in the WAF1/Cip1/p21 promoter. J. Biol. Chem. 270, 28623–28628.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Somasundaram, K., Das, S., Lakhotia, S., Wajapeyee, N. (2003). Analysis of Gene Promoter Regulation by Tumor Suppressor Genes. In: El-Deiry, W.S. (eds) Tumor Suppressor Genes. Methods in Molecular Biology™, vol 223. Humana Press. https://doi.org/10.1385/1-59259-329-1:101

Download citation

  • DOI: https://doi.org/10.1385/1-59259-329-1:101

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-987-2

  • Online ISBN: 978-1-59259-329-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics