Skip to main content

Renal Microperfusion Techniques

  • Protocol
Renal Disease

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 86))

  • 678 Accesses

Abstract

The advent of the technique of the isolated perfused tubule allowed renal physiologists to examine the transport characteristics of all portions of the nephron for the first time. The understanding of renal function prior to the advent of in vitro microperfusion rested on the integrative understanding drawn from clearance techniques and renal micropuncture experiments. Historically, clearance techniques were one of the first physiological tests of renal function. These studies were complemented and extended by the pioneering work of Richards, who developed the technique of micropuncture between 1925 and 1937, although the first reports of this technique in the mammalian nephron occurred later.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schafer, J. A., Troutman, S. L., and Andreoli, T. E. (1974) Volume reabsorption, transepithelial potential differences, and ionic permeability properties in mammalian superficial proximal straight tubules. J. Gen. Physiol. 64(5), 582ā€“607.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Wingo, C. S. (1987) Potassium transport by medullary collecting tubule of rabbit: effects of variation in K intake. Am. J. Physiol. 253(6 Pt 2), F1136ā€“F1141.

    PubMedĀ  CASĀ  Google ScholarĀ 

  3. Wingo, C. S. (1989) Active proton secretion and potassium absorption in the rabbit outer medullary collecting duct. Functional evidence for proton-potassium-activated adenosine triphosphatase. J. Clin. Investig. 84(1), 361ā€“365.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Wingo, C. S. (1990) Active and passive chloride transport by the rabbit cortical collecting duct. Am. J. Physiol. 258(5 Pt 2), F1388ā€“F1393.

    PubMedĀ  CASĀ  Google ScholarĀ 

  5. Wingo, C. S., Bixler, G. B., Park, C. H., and Straub, S. G. (1987) Picomole analysis of alkali metals by flameless atomic absorption spectrophotometry. Kidney Int. 31(5), 1225ā€“1228.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Vurek, G. G. and Bowman, R. L. (1965) Helium-glow photometer for picomole analysis of alkali metals. Science 149, 448ā€“450.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Ingram, M. J. and Hogden C. A. (1967) Electrolyte analysis of biological fluid with electron microprobe. Anal. Biochem. 18, 54ā€“61.

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Morel, F. and Le Roineln Grimellec, C. (1969) Electron probe analysis of tubular fluid composition. Nephron 6, 250ā€“264.

    Google ScholarĀ 

  9. Ramsay, J. A., Brown, R. H. J., and Croghan, P. C. (1955) Electrometric titration of chloride in small volumes. J. Exp. Biol. 32, 822ā€“829.

    CASĀ  Google ScholarĀ 

  10. Good D. W. and Vurek G. G. (1983) Picomole quantification of ammonium ions by flow through fluorometry. Anal. Biochem. 130, 199ā€“202.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Nagami, G. T. and Kurokawa, K. (1985) Regulation of ammonia production by mouse proximal tubules perfused in vitro effective luminal perfusion. J. Clin. Investig. 75, 844ā€“849.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. Vurek, G. G., Warnock, D. G., and Corsey, R. (1975) Measurement of picomole amounts of carbon dioxide by calorimetry. Anal. Chem. 47(4), 765ā€“767.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. Green, R. and Giebisch, G. (1984) Luminal hypotenicity: a driving force for fluid reabsorption from the proximal tubule. Am. J. Physiol. 246, F167ā€“F174.

    PubMedĀ  CASĀ  Google ScholarĀ 

  14. Boron W. F. (1986) Intracellular pH regulation in epithelial cells. Annu. Rev. Physiol. 48, 377ā€“388.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Roos, A. and Boron, W. F. (1981) Intracellular pH. Physiol. Rev. 61, 296ā€“434.

    PubMedĀ  CASĀ  Google ScholarĀ 

  16. Frank, A. E., Wingo, C. S., and Weiner, I. D. (2002) Effects of ammonia on bicarbonate transport in the cortical collecting duct. Am. J. Physiol. 278, F219ā€“F226.

    Google ScholarĀ 

  17. Vehaskari, V. M., Hering-Smith, K. S., Moskowitz, D. W., Weiner, I. D., and Hamm, L. L. (1989) Effect of epidermal growth factor on sodium transport in the cortical collecting tubule. Am. J. Physiol. 256, F803ā€“F809.

    PubMedĀ  CASĀ  Google ScholarĀ 

  18. Milton, A. E. and Weiner, I. D. (1997) Intracellular pH regulation in the rabbit cortical collecting duct A-type intercalated cell. Am. J. Physiol. 273, F340ā€“F347.

    PubMedĀ  CASĀ  Google ScholarĀ 

  19. Weiner, I. D. and Milton, A. E. (1996) H+-K+-ATPase in rabbit cortical collecting duct B-type intercalated cell. Am. J. Physiol. 270, F518ā€“F530.

    PubMedĀ  CASĀ  Google ScholarĀ 

  20. Milton, A. E. and Weiner, I. D. (1998) Regulation of B-type intercalated cell apical anion exchange activity by CO2/HCO3 āˆ’. Am. J. Physiol. 274, F1086ā€“F1094.

    PubMedĀ  CASĀ  Google ScholarĀ 

  21. Thomas, J. A. (1986) Intracellularly trapped pH indicators. Soc. Gen. Physiol. Ser. 40, 311ā€“325.

    PubMedĀ  CASĀ  Google ScholarĀ 

  22. Emmons, C. L. and Kurtz, I. (1990) Evidence for a basolateral organic anion transporter in principal cells studied with confocal fluorescence microscopy. J. Am. Soc. Nephrol. 1, 697 (Abstract).

    Google ScholarĀ 

  23. Weiner, I. D. and Hamm, L. L. (1989) Use of fluorescent dye BCECF to measure intracellular pH in cortical collecting tubule. Am. J. Physiol. 256, F957ā€“F964.

    PubMedĀ  CASĀ  Google ScholarĀ 

  24. Weiner, I. D. and Hamm, L. L. (1990) Regulation of intracellular pH in the rabbit cortical collecting tubule. J. Clin. Invest. 85, 274ā€“281.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  25. Fay, F. S., Carrington, W., and Fogarty, K. E. (1989) Three-dimensional molecular distribution in single cells analysed using the digital imaging microscope. J. Microscopy 153, 133ā€“149.

    CASĀ  Google ScholarĀ 

  26. Paradiso, A. M., Tsien, R. Y., and Machen, T. E. (1987) Digital image processing of intracellular pH in gastric oxyntic and chief cells. Nature 325, 447ā€“450.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  27. Kurtz, I. and Emmons, C. (1993) Measurement of intracellular pH with a laser scanning confocal microscope. Methods Cell Biol. 38, 183ā€“193.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  28. Becker, P. L. and Fay, F. S. (1987) Photobleaching of fura-2 and its effect on determination of calcium concentrations. Am. J. Physiol. 253, C613ā€“C618.

    PubMedĀ  CASĀ  Google ScholarĀ 

  29. Tsien, R. Y. (1981) A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290, 527ā€“528.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  30. Tsien, R. Y., Pozzan, T., and Rink, T. J. (1982) Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J. Cell. Biol. 94, 325ā€“334.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  31. Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440ā€“3450.

    PubMedĀ  CASĀ  Google ScholarĀ 

  32. Minta, A., Kao, J. P. Y., and Tsien, R. Y. (1989) Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J. Biol. Chem. 264, 8171ā€“8178.

    PubMedĀ  CASĀ  Google ScholarĀ 

  33. Tsien, R. Y. (1988) Fluorescence measurement and photochemical manipulation of cytosolic free calcium. TINS 11, 419ā€“424.

    PubMedĀ  CASĀ  Google ScholarĀ 

  34. Kao, J. P. Y., Harootunian, A. T., and Tsien, R. Y. (1989) Photochemically generated cytosolic calcium pulses and their detection by fluo-3. J. Biol. Chem. 264, 8179ā€“8184.

    PubMedĀ  CASĀ  Google ScholarĀ 

  35. Cobbold, P. H. and Rink, T. J. (1987) Fluorescence and bioluminescence measurement of cytoplasmic free calcium. Biochem. J. 248, 313ā€“328.

    PubMedĀ  CASĀ  Google ScholarĀ 

  36. Patterson, G. H., Knobel, S. M., Sharif, W. D., Kain, S. R., and Piston, D. W. (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J. 73, 2782ā€“2790.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  37. Merritt, J. E., McCarthy, S. A., Davies, M. P. A., and Moores, K. E. (1990) Use of fluo-3 to measure cytosolic Ca2+ in platelets and neutrophils. Biochem. J. 269, 513ā€“519.

    PubMedĀ  CASĀ  Google ScholarĀ 

  38. Berridge, M. J. and Irvine, R. F. (1989) Inositol phosphates and cell signalling. Nature 341, 197ā€“205.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  39. Williams, D. A. (1993) Mechanisms of calcium release and propagation in cardiac cells. Do studies with confocal microscopy add to our understanding? Cell Calcium 14, 724ā€“735.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  40. Wilson, T. (1990) Confocal microscopy, in Confocal Microscopy. Wilson, T. (ed.), Academic Press, London, pp. 1ā€“64.

    Google ScholarĀ 

  41. White, J. G., Amos, W. B., Durbin, R., and Fordham, M. (1990) Development of a confocal imaging system for biological epifluorescence applications, in Optical Microscopy for Biology. Herman, B., and Jacobson, K. (eds.), Wiley-Liss, New York, pp. 1ā€“18.

    Google ScholarĀ 

  42. Kitagawa, H. (1994) Theory and principal technologies of the laser scanning confocal microscope, in Multidimensional Microscopy. Cheng, P.C., Lin, T.H., Wu, W.L., and Wu, J.L. (eds.), Springer-Verlag, New York, pp. 52ā€“102.

    Google ScholarĀ 

  43. Lipp, P. and Niggli, E. (1993) Ratiometric confocal Ca2+-measurements with visible wavelength indicators in isolated cardiac myocytes. Cell Calcium 14, 359ā€“372.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Wingo, C.S., Weiner, I.D., Xia, SL. (2003). Renal Microperfusion Techniques. In: Goligorsky, M.S. (eds) Renal Disease. Methods in Molecular Medicineā„¢, vol 86. Humana Press. https://doi.org/10.1385/1-59259-392-5:457

Download citation

  • DOI: https://doi.org/10.1385/1-59259-392-5:457

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-134-9

  • Online ISBN: 978-1-59259-392-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics