Skip to main content

Random Insertion and Deletion Mutagenesis

  • Protocol
Directed Evolution Library Creation

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 231))

Abstract

Random mutagenesis combined with high-throughput screening is a versatile strategy for improving protein functions or creating artificial enzymes (1,2). Several methods for introducing random mutations in vitro have been reported (3). Among these, error-prone PCR mutagenesis, based on inaccurate copying by DNA polymerase, is the most commonly used technique to introduce random point mutations (4). However, the error-prone PCR method has an inherent drawback of biased occurrence of amino acids as the result of single base replacements in the triplet codons. For example, mutation from AUG (Met) to UGG (Trp) is unlikely to take place. To achieve a non-biased random replacement on the amino acid level, oligonucleotide-directed mutagenesis (5) and cassette mutagenesis (6,7) have been carried out. These methods are limited to a defined region of the gene and can not introduce mutations at random positions. To introduce codon-based mutations at various positions, the split-and-mix method (8) or other synthetic methods of constructing DNAs using dinucleotide or trinucleotide units have been attempted (911). These synthetic methods may be applicable only to introduce mutations within a narrow range of the target gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold, F. H., Wintrode, P. L., Miyazaki, K., and Gershenson, A. (2001) How enzymes adapt: lessons from directed evolution. Trends Biochem. Sci. 26, 100–106.

    Article  PubMed  CAS  Google Scholar 

  2. Brakmann, S. (2001) Discovery of superior enzymes by directed molecular evolution. Chembiochem. 2, 865–871.

    Article  PubMed  CAS  Google Scholar 

  3. Braman, J. (ed.) (2001) In Vitro Mutagenesis Protocols, Second Edition, Humana, Totowa, NJ.

    Google Scholar 

  4. Cadwell, R. C. and Joyce, G. F. (1992) Randomization of genes by PCR mutagenesis. PCR Methods Appl. 2, 28–33.

    PubMed  CAS  Google Scholar 

  5. Dalbadie-Mcfarland, G., Cohen, L. W., Riggs, A. D., Morin, C., Itakura, K., and Richards, J. H. (1982) Oligonucleotide-directed mutagenesis as a general and powerful method for studies of protein function. Proc. Natl. Acad. Sci. USA 79, 6409–6413.

    Article  PubMed  CAS  Google Scholar 

  6. Wells, J. A., Vasser, M., and Powers, D. B. (1985) Cassette mutagenesis: an efficient method for generation of multiple mutations at defined sites. Gene 34, 315–323.

    Article  PubMed  CAS  Google Scholar 

  7. Kegler-Ebo, D. M., Docktor, C. M., and Dimaio, D. (1994) Codon cassette mutagenesis: a general method to insert or replace individual codons by using universal mutagenic cassettes. Nucl. Acids Res. 22, 1593–1599.

    Article  PubMed  CAS  Google Scholar 

  8. Glaser, S. M., Yelton, D. E., and Huse, W. D. (1992) Antibody engineering by codon-based mutagenesis in a filamentous phage vector system. J. Immunol. 149, 3903–3913.

    PubMed  CAS  Google Scholar 

  9. Sondek, J. and Shortle, D. (1992) A general strategy for random insertion and substitution mutagenesis: substoichiometric coupling of trinucleotide phosphoramidites. Proc. Natl. Acad. Sci. USA 89, 3581–3585.

    Article  PubMed  CAS  Google Scholar 

  10. Gaytan, P., Yanez, J., Sanchez, F., Mackie, H., and Soberon, X. (1998) Combination of DMT-mononucleotide and Fmoc-trinucleotide phosphoramidites in oligonucleotide synthesis affords an automatable codon-level mutagenesis method. Chem. Biol. 5, 519–527.

    Article  PubMed  CAS  Google Scholar 

  11. Neuner, P., Cortese, R., and Monaci, P. (1998) Codon-based mutagenesis using dimer-phosphoramidites. Nucl. Acids Res. 26, 1223–1227.

    Article  PubMed  CAS  Google Scholar 

  12. Murakami, H., Hohsaka, T., and Sisido, M. (2002) Random insertion and deletion of arbitrary number of bases for codon-based random mutation of DNAs. Nat. Biotechnol. 20, 76–81.

    Article  PubMed  CAS  Google Scholar 

  13. Hohsaka, T., Ashizuka, Y., Taira, H., Murakami, H., and Sisido, M. (2001) Incorporation of nonnatural amino acids into proteins by using various four-base codons in an Escherichia coli in vitro translation system. Biochemistry 40, 11,060–11,064.

    Article  PubMed  CAS  Google Scholar 

  14. Hohsaka, T., Ashizuka, Y., Murakami, H., and Sisido, M. (1996) Incorporation of Nonnatural Amino Acids into Streptavidin through In Vitro Frame-Shift Suppression. J. Am. Chem. Soc. 118, 9778–9779.

    Article  CAS  Google Scholar 

  15. Crameri, A., Whitehorn, E. A., Tate, E., and Stemmer, W. P. (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol. 14, 315–319.

    Article  PubMed  CAS  Google Scholar 

  16. Lund, A. H., Duch, M., and Pedersen, F. S. (1996) Increased cloning efficiency by temperature-cycle ligation. Nucl. Acids Res. 24, 800–801.

    Article  PubMed  CAS  Google Scholar 

  17. Igawa, T. S., Sumaoka, J., and Komiyama, M. (2000) Hydrolysis of oligonucleotides by homogeneous Ce(IV)-EDTA complex. Chem. Lett. 56–57.

    Google Scholar 

  18. Sumaoka, J. A., Igawa, Y., and Komiyama, M. (1998) Enzymatic manipulation of the fragments obtained by cerium (IV)-induced DNA scission: Characterization of hydrolytic termini. Chem. Eur. J. 4, 205–209.

    Article  CAS  Google Scholar 

  19. Morrison, K. L. and Weiss, G. A. (2001) Combinatorial alanine-scanning. Curr. Opin. Chem. Biol. 5, 302–307.

    Article  PubMed  CAS  Google Scholar 

  20. Cormack, B. P., Valdivia, R. H., and Falkow, S. (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38.

    Article  PubMed  CAS  Google Scholar 

  21. Ormo, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y., and Remington, S. J. (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Murakami, H., Hohsaka, T., Sisido, M. (2003). Random Insertion and Deletion Mutagenesis. In: Arnold, F.H., Georgiou, G. (eds) Directed Evolution Library Creation. Methods in Molecular Biology™, vol 231. Humana Press. https://doi.org/10.1385/1-59259-395-X:53

Download citation

  • DOI: https://doi.org/10.1385/1-59259-395-X:53

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-285-8

  • Online ISBN: 978-1-59259-395-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics