Skip to main content

Cellular Localization of GFP-Tagged α Subunits

  • Protocol
G Protein Signaling

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 237))

  • 1322 Accesses

Summary

Heterotrimeric G proteins transmit signals from a wide range of cell surface G protein-coupled receptors (GPCRs) to mediate multiple cellular events. Within the plasma membrane, G proteins interact with GPCRs and effector proteins such as adenylyl cyclase (AC) and phospholipase C (PLC). Plasma membrane subdomains (e.g., lipid rafts and caveolae) may organize and regulate these interactions. G protein subunits have been reported to be in additional cellular regions, such as the Golgi apparatus and the cytoskeleton, and G protein α subunits may move within the cell during the activation cycle. Changes in the cellular localization of α subunits could be important for interactions with effectors that are not in the plasma membrane and/or could be a means for terminating G protein signaling. However, until recently, the topic of G protein α subunit localization under basal and activated conditions has been controversial, partly because of spatial and temporal limitations inherent to procedures like cell fractionation and immunohistochemistry. Green fluorescent protein (GFP)-tagging is a useful way to enable real-time visualization of proteins in living cells. This chapter describes how to produce and visualize functional GFP-tagged α subunits and to investigate whether activation affects their subcellular localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hepler, J. R., G. H. Bibblecome, C. Kleuss, L. A. Camp, S. L. Hofmann, E. M. Ross, and A. G. Gilman. (1996) Functional importance of the amino terminus of Gqα. J. Biol. Chem. 271, 496–504.

    Article  PubMed  CAS  Google Scholar 

  2. Conklin, B. R., Z. Farfel, K. D. Lustig, D. Julius, and H. R. Bourne. (1993) Substitution of three amino acids switches receptor specificity of Gqα to that of Giα. Nature 363, 274–276.

    Article  PubMed  CAS  Google Scholar 

  3. Sullivan, K. A., R. T. Miller, S. B. Masters, B. Beiderman, W. Heideman, and H. R. Bourne. (1987) Identification of receptor contact site involved in receptor-G protein coupling. Nature 330, 758–760.

    Article  PubMed  CAS  Google Scholar 

  4. Berlot, C. H. and H. R. Bourne. (1992) Identification of effector-activating residues of Gsα. Cell 68, 911–922.

    Article  PubMed  CAS  Google Scholar 

  5. Medina, R., G. Grishina, E. G. Meloni, T. R. Muth, and C. H. Berlot. (1996) Localization of the effector-specifying regions of Gi2α and Gqα. J. Biol. Chem. 271, 24,720–24,727.

    Article  PubMed  CAS  Google Scholar 

  6. Grishina, G. and C. H. Berlot. (1997) Identification of common and distinct residues involved in the interaction of αi2 and αs with adenylyl cyclase. J. Biol. Chem. 272, 20,619–20,626.

    Article  PubMed  CAS  Google Scholar 

  7. Marsh, S. R., G. Grishina, P. T. Wilson, and C. H. Berlot. (1998) Receptor-mediated activation of Gsα: Evidence for intramolecular signal transduction. Mol. Pharmacol. 53, 981–990.

    PubMed  CAS  Google Scholar 

  8. Hughes, T. E., H. Zhang, D. E. Logothetis, and C. H. Berlot. (2001) Visualization of a functional Gαq-green fluorescent protein fusion in living cells. Association with the plasma membrane is disrupted by mutational activation and by elimination of palmitoylation sites, but not by activation mediated by receptors or AlF4 . J. Biol. Chem. 276, 4227–4235.

    Article  PubMed  CAS  Google Scholar 

  9. Dietzel, C. and J. Kurjan. (1987) The yeast SCG1 gene: A Gα-like protein implicated in the a-and α-factor response pathway. Cell 50, 1001–1010.

    Article  PubMed  CAS  Google Scholar 

  10. Miyajima, I., M. Nakafuku, N. Nakayama, C. Brenner, A. Miyajima, K. Kaibuchi, K. I. Arai, Y. Kaziro, and K. Matsumoto. (1987) GPA1, a haploid-specific essential gene, encodes a yeast homolog of mammalian G protein which may be involved in mating factor signal transduction. Cell 50, 1011–1019.

    Article  PubMed  CAS  Google Scholar 

  11. Janetopoulos, C., T. Jin, and P. Devreotes. (2001) Receptor-mediated activation of heterotrimeric G proteins in living cells. Science 291, 2408–2411.

    Article  PubMed  CAS  Google Scholar 

  12. Yu, J. Z. and M. M. Rasenick. (2002) Real-time visualization of a fluorescent G(alpha)(s): dissociation of the activated G protein from plasma membrane. Mol. Pharmacol. 61, 352–359.

    Article  PubMed  CAS  Google Scholar 

  13. Sheridan, D. L., C. H. Berlot, A. Robert, F. M. Inglis, K. B. Jakobsdottir, J. R. Howe, and T. E. Hughes. (2002) A new way to rapidly create functional, fluorescent fusion proteins: random insertion of GFP with an in vitro transposition reaction. BMC Neurosci. 3, 7.

    Article  PubMed  Google Scholar 

  14. Leaney, J. L., A. Benians, F. M. Graves, and A. Tinker. (2002) A novel strategy to engineer functional fluorescent inhibitory G protein alpha subunits. J. Biol. Chem. 277, 28,803–28,809.

    Article  PubMed  CAS  Google Scholar 

  15. Berlot, C. H. Expression and functional analysis of G protein α subunits in mammalian cells, in G Proteins: Techniques of Analysis (Manning, D. R., ed.), CRC Press, Boca Raton, FL, 1999, pp. 39–57.

    Google Scholar 

  16. Berlot, C. H. (2002) Use of scanning mutagenesis to delineate structure-function relationships in G protein alpha subunits. Methods Enzymol. 344, 455–468.

    Article  PubMed  CAS  Google Scholar 

  17. Wedegaertner, P. B., P. T. Wilson, and H. R. Bourne. (1995) Lipid modifications of trimeric G proteins. J. Biol. Chem. 270, 503–506.

    Article  PubMed  CAS  Google Scholar 

  18. Kunkel, T. A., J. D. Roberts, and R. A. Zakour. (1987) Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154, 367–382.

    Article  PubMed  CAS  Google Scholar 

  19. Horton, R. M., H. D. Hunt, S. N. Ho, J. K. Pullen, and L. R. Pease. (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61–68.

    Article  PubMed  CAS  Google Scholar 

  20. Landis, C. A., S. B. Masters, A. Spada, A. M. Pace, H. R. Bourne, and L. Vallar. (1989) GTPase inhibiting mutations activate the α chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 340, 692–696.

    Article  PubMed  CAS  Google Scholar 

  21. Wong, Y. H, A. Federman, A. M. Pace, I. Zachary, T. Evans, J. Pouysségur, and H. R. Bourne. (1991) Mutant α subunits of Gi2 inhibit cyclic AMP accumulation. Nature 351, 63–65.

    Article  PubMed  CAS  Google Scholar 

  22. Conklin, B. R., O. Chabre, Y. H. Wong, A. D. Federman, and H. R. Bourne. (1992) Recombinant Gqα. Mutational activation and coupling to receptors and phospholipase C. J. Biol. Chem. 267, 31–34.

    PubMed  CAS  Google Scholar 

  23. Masters, S. B., R. T. Miller, M. H. Chi, F.-H. Chang, B. Beiderman, N. G. Lopez, and H. R. Bourne. (1989) Mutations in the GTP-binding site of Gsα alter stimulation of adenylyl cyclase. J. Biol. Chem. 264, 15,467–15,474.

    PubMed  CAS  Google Scholar 

  24. Wu, D., C. H. Lee, S. G. Rhee, and M. I. Simon. (1992) Activation of phospholipase C by the α subunits of the Gq and G11 proteins in transfected Cos-7 cells. J. Biol. Chem. 267, 1811–1817.

    PubMed  CAS  Google Scholar 

  25. Guyer, C. A., D. A. Horstman, A. L. Wilson, J. D. Clark, E. J. Cragoe, and L. E. Limbird. (1990) Cloning, sequencing, and expression of the gene encoding the porcine α2-adrenergic receptor. Allosteric modulation by Na+, H+, and amiloride analogs. J. Biol. Chem. 265, 17,307–17,317.

    PubMed  CAS  Google Scholar 

  26. Wang, Q., B. K. Mullah, and J. D. Robishaw. (1999) Ribozyme approach identifies a functional association between the G protein β1γ7 subunits in the β-adrenergic receptor signaling pathway. J. Biol. Chem. 274, 17,365–17,371.

    Article  PubMed  CAS  Google Scholar 

  27. Wang, Q., B. Mullah, C. Hansen, J. Asundi, and J. D. Robishaw. (1997) Ribozyme-mediated suppression of the G protein γ7 subunit suggests a role in hormone regulation of adenylylcyclase activity. J. Biol. Chem. 272, 26,040–26,048.

    Article  PubMed  CAS  Google Scholar 

  28. Sunahara, R. K., J. J. G. Tesmer, A. G. Gilman, and S. R. Sprang. (1997) Crystal structure of the adenylyl cyclase activator Gsα. Science 278, 1943–1947.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Hynes, T.R., Hughes, T.E., Berlot, C.H. (2004). Cellular Localization of GFP-Tagged α Subunits. In: Smrcka, A.V. (eds) G Protein Signaling. Methods in Molecular Biology™, vol 237. Humana Press. https://doi.org/10.1385/1-59259-430-1:233

Download citation

  • DOI: https://doi.org/10.1385/1-59259-430-1:233

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-137-0

  • Online ISBN: 978-1-59259-430-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics