Skip to main content

Atomic Force Microscopy of β-Amyloid

Static and Dynamic Studies of Nanostructure and Its Formation

  • Protocol
Atomic Force Microscopy

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 242))

Abstract

Ordered aggregation of the β-amyloid (Aβ) peptide in the brain as plaques consisting of fibrils is an important characteristic of Alzheimer’s disease (AD), a late onset neurodegenerative disease (1). Aβ derives from the endoproteolysis of the amyloid precursor protein (APP), which is a transmembrane protein containing 677–770 amino acids (29). The two most common forms of Aβ are the 40 and 42 residues long fragments respectively referred to as Aβ(40) and Aβ(42) (sequence shown in Fig. 1; ref. 10). The insoluble aggregated form of Aβ, which deposits in the extra cellular space in the brain and on the walls of cerebral blood vessels (6), exhibits an enhanced β-sheet conformation as opposed to the partially α-helical soluble form found in body fluids (11,12). Despite the lack of the definitive establishment of the causative role of Aβ in AD, evidence points to its aggregation and deposition in the pathogenesis of AD.

The sequence of Aβ peptide (10).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dickson, D. (1997) The pathogenesis of senile plaques. J. Neuropathol. Exp. Neurol. 56, 321–339.

    Article  PubMed  CAS  Google Scholar 

  2. Selkoe, D., Abraham, C., Podlisny, M., and Duffy, L. (1986) Isolation of lowmolecular-weight proteins from amyloid plaque fibers in Alzheimer’s disease. J. Neurochem. 146, 1820–1834.

    Google Scholar 

  3. Zhu, Y. J., Lin, H., and Lal, R. (2000) Fresh and nonfibrillar amyloid β protein (1–40) induces rapid cellular degeneration in aged human fibroblasts: evidence for AβP-channel-mediated cellular toxicity. FASEB J. 14, 1244–1254.

    PubMed  CAS  Google Scholar 

  4. Goedert, M., Trojanowski, J., and Lee, V.-Y. (1996) The neurofibrillary pathology of Alzheimer’s disease, in The Molecular and Genetic Basis of Neurological Disease, 2nd ed. (Rosenberg, R., Prusiner, S., DiMauro, S., and Barchi, R., eds.) Butterworth-Heinemann, Boston, MA, pp. 613–627.

    Google Scholar 

  5. Masters, C., Simms, G., Weinman, N., Multhaup, G., McDonald, B., and Beyreuther, K. (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA 82, 4245–4249.

    Article  PubMed  CAS  Google Scholar 

  6. Lansbury, P. T., Jr. (1996) A reductionist view of Alzheimer’s disease. Acc. Chem. Res. 29, 317–321.

    Article  CAS  Google Scholar 

  7. Jarrett, J. T., Berger, E. P., and Lansbury, P. T. (1993) The carboxy terminus of β amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32, 4693–4697.

    Article  PubMed  CAS  Google Scholar 

  8. Roher, A., Wolfe, D., Palutke, M., and KuKuruga, D. (1986) Purification, ultra-structure, and chemical analysis of Alzheimer disease amyloid plaque core protein. Proc. Natl. Acad. Sci. U.S.A. 83, 2662–2666.

    Article  PubMed  CAS  Google Scholar 

  9. Esch, F., Keim, P. S., Beattie, E. C., Blacher, R. W., and Culwell, A. R. (1990) Cleavage of amyloid β peptide during constitutive processing of its precursor. Science 248, 1122–1128.

    Article  PubMed  CAS  Google Scholar 

  10. Selkoe, D. J. (1993) Physiological production of the β-amyloid protein and the mechanism of Alzheimer’s disease. Trends Neurosci. 16, 403–409.

    Article  PubMed  CAS  Google Scholar 

  11. Kelly, J. W. (1998) The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr. Opin. Struct. Biol. 8, 101–106.

    Article  PubMed  CAS  Google Scholar 

  12. Smith, M. A. (1998) Alzheimer disease. Int. Rev. Neurobiol. 42, 1–54.

    Article  PubMed  CAS  Google Scholar 

  13. Naiki, H. and Nakakuki, K. (1996) First-order kinetic model of Alzheimer’s β-amyloid fibril extension in vitro. Lab. Invest. 74, 374–383.

    PubMed  CAS  Google Scholar 

  14. Yip, C. M. and McLaurin, J. (2001) Amyloid-β peptide assembly: a critical step in fibrillogenesis and membrane disruption. Biophys. J. 80, 1359–1371.

    Article  PubMed  CAS  Google Scholar 

  15. Lomakin, A., Chung, D. S., Benedek, G. B., Kirschner, D. A., and Teplow, D. B. (1996) On the nucleation and growth of amyloid β-protein fibrils: detection of nuclei and quantitation of rate constants. Natl. Acad. Sci. USA 93, 1125–1129.

    Article  CAS  Google Scholar 

  16. Esler, W. P., Stimson, E. R., Ghilardi, J. R., et al. (1996) In vitro growth of Alzheimer’s disease β-amyloid plaques displays first-order kinetics. Biochemistry 35, 749–757.

    Article  PubMed  CAS  Google Scholar 

  17. Harper, J. D. and Lansbury, J., P.T. (1997) Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385–407.

    Article  PubMed  CAS  Google Scholar 

  18. Putman, C. A. J., Van Der Werf, K. O., De Grooth, B. G., Van Hulst, N. F., and Greve, J. (1994) Tapping mode atomic force microscopy in liquid. Appl. Phys. Lett. 64, 2454–2456.

    Article  CAS  Google Scholar 

  19. Hansma, P. K., Cleveland, J. P., Radmacher, M., et al. (1994) Tapping mode atomic force microscopy in liquids. Appl. Phys. Lett. 64, 1738–1740.

    Article  CAS  Google Scholar 

  20. Goldsbury, C., Kistler, J., Aebi, U., Arvinte, T., and Cooper, G. J. S. (1999) Watching amyloid fibrils grow by time-lapse atomic force microscopy. J. Mol. Biol. 285, 33–39.

    Article  PubMed  CAS  Google Scholar 

  21. Harper, J. D., Wong, S. S., Lieber, C. M., and Lansbury, P. T. (1999) Assembly of aβ amyloid protofibrils: an in vitro model for a possible early event in Alzheimer’s disease. Biochemistry 38, 8972–8980.

    Article  PubMed  CAS  Google Scholar 

  22. Kowalewski, T. and Holtzman, D. M. (1999) In situ atomic force microscopy study of Alzheimer’s β-amyloid peptide on different substrates: new insights into mechanism of β-sheet formation. Proc. Natl. Acad. Sci. USA 96, 3688–3693.

    Article  PubMed  CAS  Google Scholar 

  23. Blackley, H. K. L., Patel, N., Davies, M. C., et al. (1999) Morphological development of β(1—40) amyloid fibrils. Exp. Neurology 158, 437–443.

    Article  CAS  Google Scholar 

  24. Lin, H., Bhatia, R., and Lal, R. (2001) Amyloid β protein forms ion channels: implications for Alzheimer’s disease pathophysiology. FASEB J. 15, 2433–2444.

    Article  PubMed  CAS  Google Scholar 

  25. Yang, D. S., Yip, C. M., Jackson Huangi, T. H., Chakrabarttyi, A., and Fraser, P. E. (1999) Manipulating the amyloid-β aggregation pathway with chemical chaperones. J. Bio. Chem. 274, 32,970–32,974.

    Google Scholar 

  26. Blackley, H. K. L., Sanders, G. H. W., Davies, M. C., Roberts, C. J., Tendler, S. J. B., and Wilkinson, M. J. (2000) In-situ atomic force microscopy study of β-amyloid fibrillization. J. Mol. Biol. 298, 833–840.

    Article  PubMed  CAS  Google Scholar 

  27. Bhatia, R., Lin, H., and Lal, R. (2000) Fresh and globular amyloid β protein (1–42) induces rapid cellular degeneration: evidence for AβP channel-mediated cellular toxicity. FASEB J. 14, 1233–1243.

    PubMed  CAS  Google Scholar 

  28. Harper, J. D., Wong, S. S., Lieber, C. M., and Lansbury, P. T. (1997) Atomic force microscopy imaging of seeded fibril formation and fibril branching by the Alzheimer’s disease amyloid-β protein. Chem. Biol. 4, 951–959.

    Article  PubMed  CAS  Google Scholar 

  29. Harper, J. D., Wong, S. S., Lieber, C. M., and Lansbury, P. T. (1997) Observation of metastable Aβ amyloid protofibrils by atomic force microscopy. Chem. Biol. 4, 119–125.

    Article  PubMed  CAS  Google Scholar 

  30. Jackson Huang, T. H., Yang, D. S., Plaskos, N. P., et al. (2000) Structural studies of soluble oligomers of the Alzheimer β-amyloid Peptide. J. Mol. Biol. 297, 73–87.

    Google Scholar 

  31. Xu, S. and Ansdorf, M. F. (1994) Calibration of scanning (atomic) force microscope with gold particles. J. Microscopy 173(Pt. 3), 199–210.

    CAS  Google Scholar 

  32. Villarrubia, J. S. (1997) Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. Natl. Inst. Stand. Technol. 102, 425.

    Google Scholar 

  33. Cai, X. D., Golde, T. E., and Younkin, S. G. (1993) Release of excess amyloid β protein from a mutant amyloid β protein precursor. Science 259, 514–516.

    Article  PubMed  CAS  Google Scholar 

  34. Tamayo, J., Humphris, A., and Miles, M. (2001) High-Q dynamic force microscopy in liquid and its application to living cells. Biophys. J. 81, 526–537.

    Article  PubMed  CAS  Google Scholar 

  35. Humphris, A., Tamayo, J., and Miles, M. (2000) Active quality factor control in liquids for force spectroscopy. Langmuir 16, 7891–7894.

    Article  CAS  Google Scholar 

  36. Tamayo, J., Humphris, A., and Miles, M. (2000) Piconewton regime dynamic force microscopy in liquid. Appl. Phys. Lett. 77, 582–584.

    Article  CAS  Google Scholar 

  37. Humphris, A., Round, A., and Miles, M. (2001) Enhanced imaging of DNA via active quality factor control. Surface Science 491, 468–472.

    Article  CAS  Google Scholar 

  38. Infinitesima Limited. Bristol, UK. http://www.infinitesima.com/.

  39. Asylum Research. Santa Barbara, CA. http://www.asylumresearch.com/.

  40. Lantz, M. A., O’shea, S. J., and Welland, M. E. (1994) Force microscopy imaging in liquids using ac techniques. Appl. Phys. Lett. 65, 409–411.

    Article  CAS  Google Scholar 

  41. Han, W., Lindsay, S. M., and Jing, T. (1996) A magnetically driven oscillating probe microscope for operation in liquids. Appl. Phys. Lett. 69, 4111–4113.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Legleiter, J., Kowalewski, T. (2004). Atomic Force Microscopy of β-Amyloid. In: Braga, P.C., Ricci, D. (eds) Atomic Force Microscopy. Methods in Molecular Biology™, vol 242. Humana Press. https://doi.org/10.1385/1-59259-647-9:349

Download citation

  • DOI: https://doi.org/10.1385/1-59259-647-9:349

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-094-6

  • Online ISBN: 978-1-59259-647-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics