Skip to main content

Microflora of the Gastrointestinal Tract

A Review

  • Protocol
Public Health Microbiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 268))

Abstract

The mucosal surface of the human gastrointestinal (GI) tract is about 200–300 m2 and is colonized by 1013–14 bacteria of 400 different species and subspecies. Savage (1) has defined and categorized the gastrointestinal microflora into two types, autochthonous flora (indigenous flora) and allochthonous flora (transient flora). Autochthonous microorganisms colonize particular habitats, i.e., physical spaces in the GI tract, whereas allochthonous microorganisms cannot colonize particular habitats except under abnormal conditions. Most pathogens are allochthonous microorganisms; nevertheless, some pathogens can be autochthonous to the ecosystem and normally live in harmony with the host, except when the system is disturbed (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Savage, D. C. (1977) Interactions between the host and its microbes. In: Microbial Ecology of the Gut (Clark, R. T. J. and Bauchop, T., eds.). Academic, San Diego, pp. 277–310.

    Google Scholar 

  2. Trenschel, R., Peceny, R., Runde, V., et al. (2000) Fungal colonization and invasive fungal infections following allogeneic BMT using metronidazole, ciprofloxacin and fluconazole or ciprofloxacin and fluconazole as intestinal decontamination. Bone Marrow Transplant 26, 993–997.

    Article  PubMed  CAS  Google Scholar 

  3. Tannock, G. W. (1983) Effect of dietary and environmental stress on the gastrointestinal microbiota. In: Human Intestinal Microflora in Health and Disease (Hentges, D. J., ed.). Academic, London, p. 517.

    Google Scholar 

  4. Brassart, D. and Schiffrin, E. J. (1997) The use of probiotics to reinforce mucosal defence mechanisms. Trends Food Sci. Technol. 8, 321–326.

    Article  CAS  Google Scholar 

  5. Gorbach, S. L. and Goldin, B. R. (1990) The intestinal microflora and the colon cancer connection. Rev. Infect. Dis. 12(suppl 2), S252–S261.

    PubMed  CAS  Google Scholar 

  6. Ofek, I. and Doyle, R. J. (1994) Principles of bacterial adhesion. In: Bacterial Adhesion to Cells and Tissues (Ofek, I. and Doyle, R. J., eds.). Chapman & Hall, New York, pp. 1–16.

    Google Scholar 

  7. Mouricout, M., Petit, J. M., Carias, J. R., and Julien, R. (1990) Glycoprotein glycans that inhibit adhesion of Escherichia coli mediated by K99 fimbriae: treatment of experimental colibacillosis. Infect. Immun. 58, 98–106.

    PubMed  CAS  Google Scholar 

  8. Lee, Y. K. and Puong, K. Y. (2002) Competition for adhesion between probiotics and human gastrointestinal pathogens in the presence of carbohydrate. Br. J. Nutr. 88, S1–S8.

    Article  Google Scholar 

  9. Sharon, N. and Lis, H. (1981) Glycoproteins: research booming on long-ignored, ubiquitous compounds. Chem. Engr. News 59, 21–24.

    Article  CAS  Google Scholar 

  10. Hynes, R. O. and Yamada, K. M. (1982) Fibronectins: multifunctional molecular glycoproteins. J. Cell Biol. 95, 369–377.

    Article  PubMed  CAS  Google Scholar 

  11. Klemm, P. (1985) Fimbrial adhesion of Escherichia coli. Rev. Infect. Dis. 7,321–340.

    Article  PubMed  CAS  Google Scholar 

  12. Hulgren, S. J., Abraham, S., Caparon, M., Falk, P., St. Geme, J. W., and Normark, S. (1993) Pilus and nonpilus bacterial adhesion: assembly and function in cell recognition. Cell 73, 887–901.

    Article  Google Scholar 

  13. McGroarty, J. P. (1994) Cell surface appendages of lactobacilli. FEMS Microbiol. Lett. 124, 405–410.

    Article  PubMed  CAS  Google Scholar 

  14. Yamamoto, K., Miwa, T., Taniguchi, H., et al. (1996) Binding specificity of Lactobacillus to glycolipids. Biochem. Biophys. Res. Commun. 228, 148–152.

    Article  PubMed  CAS  Google Scholar 

  15. Neeser, J. R., Granato, D., Rouvet, M., Servin, A., Teneberg, S., and Karlsson, K. A. (2000) Lactobacillus johnsonii La1 shares carbohydrate-binding specificities with several enteropathogenic bacteria. Glycobiology 10, 1193–1199.

    Article  PubMed  CAS  Google Scholar 

  16. Prince, A. (1996) Pseudomonas aeruginosa: versatile attachment mechanisms. In: Bacterial Adhesion (Fletcher, M., ed.). Wiley-Liss, New York, pp. 183–199.

    Google Scholar 

  17. Lopez-Boado, Y. S., Wilson, C. L., Hooper, L. V., Gordon, J. I., and Hultgren, S. J. (2000) Bacterial exposure induces and activates matrilysin in mucosal epithelial cells. J. Cell Biol. 148, 1305–1315.

    Article  PubMed  CAS  Google Scholar 

  18. Bry, L., Falk, P. G., Midtvedt, T., and Gordon, J. I. (1996) A model of host-microbial interactions in the an open mammalian ecosystem. Science 273, 1380–1383.

    Article  PubMed  CAS  Google Scholar 

  19. Hooper, L. V. and Gordon, J. I. (2001) Commensal host-bacterial relationships in the gut. Science 292, 1115–1118.

    Article  PubMed  CAS  Google Scholar 

  20. Klemm, P. and Schembri, M. A. (2000). Bacterial adhesions: function and structure. Int. J. Med. Microbiol. 290, 27–35.

    PubMed  CAS  Google Scholar 

  21. Pinto, M., Robine-Leon, S., Appay, M. D., et al. (1983) Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol. Cell 47, 323–330.

    Google Scholar 

  22. Lesuffleur, T., Barbat, A., Dussaulx, E., and Zweibaum, A. (1990) Growth adaptation to methotrexate of HT-29 human colon carcinoma cells associated with their ability to differentiate into columnar absorptive and mucus-secreting cells. Cancer Res. 50, 6334–6343.

    PubMed  CAS  Google Scholar 

  23. Janet, F. F. and Gordon, G. F. (1987) Gastrointestinal mucus. In: Physiology of the Gastrointestinal Tract (Johnson, L. R., ed.). Raven, New York, pp. 1255–1284.

    Google Scholar 

  24. Mantle, M. (1996) The anti-adherent role of intestinal mucus: mechanisms and physiopathology. Mucus Dialogue On-line 2, 1–6.

    Google Scholar 

  25. Woods, D. E., Straus, D. C., Johanson, W. G., Berry, V. K., and Bass, J. A. (1980): Role of pili in adherence of a Pseudomonas aeruginosa to mammalian buccal epithelial cells. Infect. Immun. 29, 1146–1151.

    PubMed  CAS  Google Scholar 

  26. He, F., Ouwehand, A. C., Isolauri, E., et al. (2001) Differences in composition and mucosal adhesion of bifidobacteria isolated from healthy adults and healthy seniors. Curr. Microbiol. 43, 351–354.

    Article  PubMed  CAS  Google Scholar 

  27. Matsumoto, M., Tani, H., Ono, H., Ohishi, H., and Benno, Y. (2002) Adhesive property of Bifidobacterium lactis LYM 512 and predominant bacteria of intestinal microflora to human intestinal mucin. Curr. Microbiol. 44, 212–215.

    Article  PubMed  CAS  Google Scholar 

  28. Ouwehand, A. C., Tuomola, E. M., Lee, Y. K., and Salminen, S. (2001) Microbial interactions to intestinal mucosal models. Methods Enzymol. 337, 200–212.

    Article  PubMed  CAS  Google Scholar 

  29. Ouwehand, A. C., Conway, P. L., and Salminen, S. J. (1995) Inhibition of S-fimbria-mediated adhesion to human ileostomy glycoproteins by a protein isolated from bovine colostrums. Infect. Immun. 63, 4917–4920.

    PubMed  CAS  Google Scholar 

  30. Apostolou, E., Pelto, L., Kirjavainen, P.V., Isolauri E., Salminen, S. J., and Gibson, G. R. (2001) Differences in the gut bacterial flora of healthy and milk-hypersensitive adults, as measured by fluorescence in situ hybridization. FEMS Immunol. Med. Microbiol. 30, 217–221.

    Article  PubMed  CAS  Google Scholar 

  31. Freter, R., Stauffer, E., and Cleven, D. (1983) Continuous-flow cultures as in vitro models of the ecology of large intestinal flora. Infect Immun. 36, 666.

    Google Scholar 

  32. Wilson, K. H. and Perini, F. (1988) Role of competition for nutrients in suppression of Clostridum difficile by the colonic microflora. Infect Immun. 56, 2610.

    PubMed  CAS  Google Scholar 

  33. Miller, T. L. and Wolin, M. J. (1981) Fermentation by the human large intestine microbial community in an semicontiuous culture system. Appl. Environ. Microbiol. 42, 400.

    PubMed  CAS  Google Scholar 

  34. Minekus, M., Smeets-peeters, M., Bernakier, A., et al. (1999) A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and adsorption of fermentation products. Appl. Microbiol. Biotechnol. 53, 108–114.

    Article  PubMed  CAS  Google Scholar 

  35. Coconnier, M. H., Liévin, V., Lorrot, M., and Servin, A. L. (2000) Antagonistic activity of Lactobacillus acidophilus LB against intracellular Salmonella enterica serovar typhimurium infecting human enterocyte-like Caco-2/TC-7 cells. Appl. Environ. Microbiol. 66, 1152–1157.

    Article  PubMed  CAS  Google Scholar 

  36. Heinemann, C., van Hylckama Vlieg, J. E. T., Janssen, D. B., Busscher, H. J., van der Mei, H. C., and Reid, G. (2000) Purification and characterization of a surface-binding protein from Lactobacillus fermentum RC-14 that inhibits adhesion of Enterococcus faecalis 1131. FEMS Microbiol. Lett. 190, 177–180.

    Article  PubMed  CAS  Google Scholar 

  37. Mack, D. R., Michail, S., Wei, S., McDougall, L., and Hollingsworth, M. A. (1999) Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am. J. Physiol. 276, G941–G950.

    PubMed  CAS  Google Scholar 

  38. Chan, R. C. Y., Reid, G., Irvin, R. T., Bruce, A. W., and Costerton, J. W. (1985) Competitive exclusion of uropathogens from human uroepithelial cells by Lactobacillus whole cells and cell wall fragments. Infect. Immun. 47, 84–89.

    PubMed  CAS  Google Scholar 

  39. Coconnier, M.-H., Bernet, M.-F., Kerneis, S., Chauviere, G., Fourniat, J., and Servin, A. L. (1993) Inhibition of adhesion of enteroinvasive pathogens to human intestinal Caco-2 cells by Lactobacillus acidophilus strain LB decreases bacterial invasion. FEMS Microbiol. Lett. 110, 299–306.

    Article  PubMed  CAS  Google Scholar 

  40. Osset, J., Bartolomé, R. M., Garcia, E., and Andreu, A. (2001) Assessment of the capacity of Lactobacillus to inhibit the growth of uropathogens and block their adhesion to vaginal epithelial cells. J. Infect. Dis. 183, 485–491.

    Article  PubMed  CAS  Google Scholar 

  41. Tuomola, E. M., Ouwehand, A. C., and Salminen, S. J. (1999) The effect of probiotic bacteria on the adhesion of pathogens to human intestinal mucus. FEMS Immunol. Med. Microbiol. 26, 137–142.

    Article  PubMed  CAS  Google Scholar 

  42. Neeser, J. R., Granato, D., Rouvet, M., Servin, A., Teneberg, S., and Karlsson, K. A. (2000) Lactobacillus johnsonii La1 shares carbohydrate-binding specificities with several enteropathogenic bacteria. Glycobiology 10, 1193–1199.

    Article  PubMed  CAS  Google Scholar 

  43. Mukai, T., Asasaka, T., Sato, E., Mori, K., Matsumoto, M., and Ohori, H. (2002) Inhibition of binding of Helicobacter pylori to the glycolipid receptors by probiotic Lactobacillus reuteri. FEMS Immunol. Med. Microbiol. 32, 105–110.

    Article  PubMed  CAS  Google Scholar 

  44. Lim, B. K., Mahendran, R., and Lee, Y. K. (2002) Chemopreventive effect of Lactobacillus rhamnosus on growth of a subcutaneously implanted bladder cancer cell line in the mouse. Jpn. J. Cancer Res. 93, 36–51.

    PubMed  CAS  Google Scholar 

  45. Aso, Y., Akaza, H., and Kotake, T. (1995) Preventive effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer in a double blind clinical trial. Eur. Urol. 27, 104–109.

    PubMed  CAS  Google Scholar 

  46. Yong, J. Y., Mahendran, R., Lee, Y. K., and Bay BH. Lactobacillus spp. potentiate GM-CSF and IL-8 production in malignant urothelial cells. Submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc. Totowa, NJ

About this protocol

Cite this protocol

Hao, WL., Lee, YK. (2004). Microflora of the Gastrointestinal Tract. In: Spencer, J.F.T., Ragout de Spencer, A.L. (eds) Public Health Microbiology. Methods in Molecular Biology, vol 268. Humana Press. https://doi.org/10.1385/1-59259-766-1:491

Download citation

  • DOI: https://doi.org/10.1385/1-59259-766-1:491

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-117-2

  • Online ISBN: 978-1-59259-766-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics