Skip to main content

New Selection Marker for Plant Transformation

  • Protocol
Recombinant Gene Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 267))

  • 3481 Accesses

Abstract

A number of systems to insert foreign DNA into a plant genome have been developed so far. However, only a small percentage of transgenic plants are obtained using any of these methods. Stable transgenic plants are selected by co-introduction of a selectable marker gene, which in most cases are genes that confer resistance against antibiotics or herbicides. In this chapter we describe a new method for selection of transgenic plants after transformation. The selection agent used is the nontoxic and common sugar glucose. Wild-type Arabidopsis thaliana plantlets that have been germinated on glucose have small white cotyledons and remain petite because the external sugar switches off the photosynthetic mechanism. The selectable marker gene encodes the essential trehalose-6-phophate synthase, AtTPS1, that catalyzes the first reaction of the two-step trehalose synthesis. Upon ectopic expression of AtTPS1 driven by the 35S promoter, transformed Arabidopsis thaliana plants became insensitive to glucose in comparison to wild-type plants. After transformation using AtTPS1 as a selection marker and 6% glucose as selection agent it is possible to single out the green and normal sized transgenic plants amid the nontransformed plantlets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roger, H., Philip, M., and Harry, K. (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci. 5, 446–451.

    Article  Google Scholar 

  2. WHO (1993) Health aspects of marker genes in genetically modified plants. Report of a WHO workshop of the food safety unit.

    Google Scholar 

  3. Kunze, I., Ebneth, M., Heim, U., Geiger, M., Sonnewald, U., and Herbers, K. (2001) 2-Deoxyglucose resistance: a novel selection marker for plant transformation. Mol. Breeding 7, 221–227.

    Article  CAS  Google Scholar 

  4. Malca, I., Endo, R. M., and Long, M. R. (1967) Mechanism of glucose counteraction of inhibition of root elongation by galactose, mannose, and glucosamine. Phytopathology 57, 272–278.

    CAS  Google Scholar 

  5. Lucca, P., Ye, X., and Potrykus, I. (2001) Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol. Breed. 7, 43–49.

    Article  CAS  Google Scholar 

  6. Joersbo, M., Donaldson, I., Kreiberg, J., Petersen, S. G., Brunstedt, J., and Okkels, F. T. (1998) Analysis of mannose selection used for transformation of sugar beet. Mol. Breed. 4, 111–117.

    Article  CAS  Google Scholar 

  7. Negrotto, D., Jolley, M., Beer, S., Wenck, A. R., and Hansen, G. (2000) The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (zea mays L.) via Agrobacterium transformation. Plant Cell Rep. 19, 798–803.

    Article  CAS  Google Scholar 

  8. Haldrup, A., Petersen, S. G., and Okkels, F. T. (1998) The xylose isomerase gene from Thermoanaerobacterium thermosulfurogenes allows effective selection of transgenic plant cells using D-xylose as the selection agent. Plant Mol. Biol. 37, 287–296.

    Article  PubMed  CAS  Google Scholar 

  9. Zuo, J. and Chua, N.-H. (2000) Chemical-inducible systems for regulated expression of plant genes. Curr. Opin. Biotechnol. 11, 146–151.

    Article  PubMed  CAS  Google Scholar 

  10. Kunkel, T., Niu, Q.-W., Chan, Y.-S., and Chua, N.-H. (1999) Inducible isopentenyl transferase as a high-efficiency marker for plant transformation. Nat. Biotechnol. 17, 916–919.

    Article  PubMed  CAS  Google Scholar 

  11. McCormac, A., Fowler, M. R., Chen, D. F., and Elliott, M. C. (2001) Efficient co-transformation of Nicotiana tabacum by two independent T-DNAs, the effect of T-DNA size and implications for genetic separation. Transgenic Res 10, 143–155.

    Article  PubMed  CAS  Google Scholar 

  12. DeBuck, S., Jacobs, A., Van Montagu, M., and Depicker, A. (1989) Agrobacterium tumefaciens transformation and cotransformation frequencies of Arabidopsis thaliana root explants and tobacco protoplasts. Mol. Plant Microbe Interact. 11, 449–457.

    Article  Google Scholar 

  13. Yoder, J. I. and Goldsbrough, A. P. (1994) Transformation systems for generating marker-free transgenic plants. Bio/Technology 12, 263–267.

    Article  CAS  Google Scholar 

  14. Ebinuma, H., Sugita, K., Matsunaga, E., Endo, S., and Yamada, K. (2001) Systems for the removal of a selection marker and their combination with a positive marker. Plant Cell Rep. 20, 383–392.

    Article  CAS  Google Scholar 

  15. Hare, P. D. and Chua, N.-H. (2002) Excision of selectable marker genes from transgenic plants. Nature Biotechnol. 20, 575–580.

    Article  CAS  Google Scholar 

  16. Russell, S. H., Hoopes, J. L., and Odell, J. T. (1992) Directed excision of a transgene from the plant genome. Mol. Gen. Genet. 234, 49–59.

    PubMed  CAS  Google Scholar 

  17. Dale, E. C. and Ow, D. W. (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc. Natl. Acad. Sci. USA 88, 10558–10562.

    Article  PubMed  CAS  Google Scholar 

  18. Zuo, J., Niu, Q. W., Moller, S. G., and Chua, N.-H. (2001) Chemical-regulated, site-specific DNA excision in transgenic plants. Nat. Biotechnol. 19, 157–161.

    Article  PubMed  CAS  Google Scholar 

  19. Corneille, S., Lutz, K., Svab, Z., and Maliga, P. (2001) Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. Plant J. 27, 171–178.

    Article  PubMed  CAS  Google Scholar 

  20. Hajdukiewicz, P. T., Gilbertson, L., and Staub, J. M. (2001) Multiple pathways for Cre/loxmediated recombination in plastids. Plant J. 27, 161–170.

    Article  PubMed  CAS  Google Scholar 

  21. Zubko, E., Scutt, C., and Meyer, P. (2000) Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes Nat. Biotechnology 18, 442–445.

    Article  CAS  Google Scholar 

  22. Iamtham, S. and Day, A. (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat. Biotechnol. 18, 1172–1176.

    Article  PubMed  CAS  Google Scholar 

  23. Daniell, H., Muthukumar, B., and Lee, S. B. (2001) Marker free transgenic plants: engineering the chloropast genome without the use of antibiotic selection. Curr. Gen. 39, 109–116.

    Article  CAS  Google Scholar 

  24. Vogel, G., Fiehn, O., L, L. J.-R.-d.-B., Boller, T., Wiemken, A., Aeschbacher, R. A., and Wingler, A. (2001) Trehalose metabolism in Arabidopsis: occurrence of trehalose and molecular cloning and characterization of trehalose-6-phosphate synthase homologues. J. Exp. Bot. 52, 1817–1826.

    Article  PubMed  CAS  Google Scholar 

  25. Leyman, B., Van Dijck, P., and Thevelein, J. M. (2001) An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana. Trends Plant Sci. 6, 510–513.

    Article  PubMed  CAS  Google Scholar 

  26. Blasquez, M. A., Santos, E., Flores, C. L., Martinez-Zapater, J. M., Salinas, J., and Gancedo, C. (1998) Isolation and molecular characterization of the Arabidopsis TPS1 gene, encoding trehalose-6-phosphate synthase. Plant J. 13, 685–689.

    Article  Google Scholar 

  27. Van Dijck, P., Mascorro-Gallardo, J. O., Bus, M. D., Royackers, K., Iturriaga, G., and Thevelein, J. M. (2002) Truncation of Arabidopsis thaliana and Selaginella lepidophylla trehalose-6-phosphate synthase unlocks high catalytic activity and supports high trehalose levels on expression in yeast. Biochem. J. 15, 63–71.

    Google Scholar 

  28. Eastmond, P. J., Dijken, A. J. v., Spielman, M., Kerr, A., Tissier, A. F., Dickinson, H. G., et.al., (2002) Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. Plant J. 29, 225–235.

    Article  PubMed  CAS  Google Scholar 

  29. Sheen, J., Zhou, L., and Jang, J. C. (1999) Sugars as signaling molecules. Curr. Opin. Plant. Biol. 2, 410–418.

    Article  PubMed  CAS  Google Scholar 

  30. Clough, S. J. and Bent, A. F. (1998) Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Leyman, B., Avonce, N., Ramon, M., Van Dijck, P., Thevelein, J.M., Iturriaga, G. (2004). New Selection Marker for Plant Transformation. In: Balbás, P., Lorence, A. (eds) Recombinant Gene Expression. Methods in Molecular Biology, vol 267. Humana Press. https://doi.org/10.1385/1-59259-774-2:385

Download citation

  • DOI: https://doi.org/10.1385/1-59259-774-2:385

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-262-9

  • Online ISBN: 978-1-59259-774-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics