Skip to main content

Analysis of Triplet Repeat Replication by Two-Dimensional Gel Electrophoresis

  • Protocol
Trinucleotide Repeat Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 277))

  • 1056 Accesses

Summary

Expansions of triplet repeats are responsible for more than 15 hereditary neurological disorders in humans (1,2). Triplet repeats are fairly stable when the number of elementary units is under approx 30, but become polymorphic in length with a clear bias for expansions when this threshold is exceeded. This results in the rapid addition of hundreds or even thousands of extra repeats and, ultimately, disease. The mechanisms of triplet repeat expansions are not yet understood. The role of several genetic processes, including replication (3), recombination (4,5), and repair (6), was suggested. However, given the swift accumulation of extra DNA material, DNA replication seems to be an intuitive candidate for generating expansions. Numerous data point to the aberrant replication of triplet repeats as a cause of triplet repeat expansions (3,716). Direct experimental proof of aberrant replication through triplet repeats was lacking. This encouraged us to study the mode of replication fork progression through triplet repeats in vivo. We analyzed the effects of triplet repeats on replication of bacterial or yeast plasmids using an approach called two-dimensional neutral/neutral gel electrophoresis of replication intermediates. This technique, originally developed for mapping replication origins (17,18), is also instrumental in defining replication pause sites (19). Using this technique, we were able to unambiguously demonstrate that expandable triplet repeats attenuate replication fork progression in vivo and get some insights into the mechanisms of repeat expansions (20,21).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bowater, R. P. and Wells, R. D. (2001) The intrinsically unstable life of DNA triplet repeats associated with human hereditary disorders. Prog. Nucleic Acid Res. Mol. Biol. 66, 159–202.

    Article  PubMed  CAS  Google Scholar 

  2. Siyanova, E. Y. and Mirkin, S. M. (2001) Expansion of trinucleotide repeats. Mol. Biol. (Mosc.) 35, 168–182.

    Article  CAS  Google Scholar 

  3. Kang, S., Jaworski, A., Ohshima, K., et al. (1995) Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli. Nature Genet. 10, 213–218.

    Article  CAS  Google Scholar 

  4. Jakupciak, J. P. and Wells, R. D. (2000) Gene conversion (recombination) mediates expansions of CTG.CAG repeats. J. Biol. Chem. 275, 40,003–40,013.

    Article  PubMed  CAS  Google Scholar 

  5. Richard, G.-F., Goellner, G. M., McMurray, C. T., et al. (2000) Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11-RAD50-XRS2 complex. EMBO J. 19, 2381–2390.

    Article  PubMed  CAS  Google Scholar 

  6. Kovtun, I. V. and McMurray, C. T. (2001) Trinucleotide expansion in haploid germ cells by gap repair. Nature Genet. 27, 407–411.

    Article  PubMed  CAS  Google Scholar 

  7. Balakumaran, B. S., Freudenreich, C. H., and Zakian, V. A. (2000) CGG/CCG repeats exhibit orientation-dependent instability and orientation-independent fragility in Saccharomyces cerevisiae. Hum. Mol. Genet. 9, 93–100.

    Article  PubMed  CAS  Google Scholar 

  8. Cleary, J. D., Nichol, K., Wang, Y. H., et al. (2002) Evidence of cis-acting factors in replication-mediated trinucleotide repeat instability in primate cells. Nature Genet. 31, 37–46.

    Article  PubMed  CAS  Google Scholar 

  9. Freudenreich, C. H., Kantrow, S. M., and Zakian, V. A. (1998) Expansion and length-dependent fragility of CTG repeats in yeast. Science 279, 853–856.

    Article  PubMed  CAS  Google Scholar 

  10. Ireland, M. J., Reinke, S. S., and Livingston, D. M. (2000) The impact of lagging strand replication mutations on the stability of CAG repeat tracts in yeast. Genetics 155, 1657–1665.

    PubMed  CAS  Google Scholar 

  11. Iyer, R. R., Pluciennik, A., Rosche, W. A., et al. (2000) DNA polymerase III proofreading mutants enhance the expansion and deletion of triplet repeat sequences in Escherichia coli. J. Biol. Chem. 275, 2174–2184.

    Article  PubMed  CAS  Google Scholar 

  12. Miret, J. J., Pessoa-Brandao, L., and Lahue, R. S. (1998) Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 95, 12,438–12,443.

    Article  PubMed  CAS  Google Scholar 

  13. Schweitzer, J. K. and Livingston, D. M. (1999) The effect of DNA replication mutations on CAG tract stability in yeast. Genetics 152, 953–963.

    PubMed  CAS  Google Scholar 

  14. Schweitzer, J. K. and Livingston, D. M. (1998) Expansions of CAG repeat tracts are frequent in a yeast mutant defective in Okazaki fragment maturation. Hum. Mol. Genet. 7, 69–74.

    Article  PubMed  CAS  Google Scholar 

  15. Spiro, C., Pelletier, R., Rolfsmeier, M. L., et al. (1999) Inhibition of FEN-1 processing by DNA secondary structure at trinucleotide repeats. Mol. Cell 4, 1079–1085.

    Article  PubMed  CAS  Google Scholar 

  16. White, P. J., Borts, R. H., and Hirst, M. C. (1999) Stability of the human fragile X (CGG)n triplet repeat array in Saccharomyces cerevisiae deficient in aspects of DNA metabolism. Mol. Cell. Biol. 19, 5675–5684.

    PubMed  CAS  Google Scholar 

  17. Brewer, B. J. and Fangman, W. L. (1987) The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51, 463–471.

    Article  PubMed  CAS  Google Scholar 

  18. Huberman, J. A., Spotila, L. D., Nawotka, K. A., et al. (1987) The in vivo replication origin of the yeast 2 microns plasmid. Cell 51, 473–481.

    Article  PubMed  CAS  Google Scholar 

  19. Deshpande, A. M. and Newlon, C. S. (1996) DNA replication fork pause sites dependent on transcription. Science 272, 1030–1033.

    Article  PubMed  CAS  Google Scholar 

  20. Pelletier, R., Krasilnikova, M. M., Samadashwily, G. M., et al. (2002) Replication and expansion of trinucleotide repeats in yeast. Mol. Cell. Biol. 23, 1349–1357.

    Article  Google Scholar 

  21. Samadashwily, G. M., Raca, G., and Mirkin, S. M. (1997) Trinucleotide repeats affect DNA replication in vivo. Nature Genet. 17, 298–304.

    Article  PubMed  CAS  Google Scholar 

  22. Martin-Parras, L., Hernandez, P., Martinez-Robles, M., et al. (1991) Unidirectional replication as visualised by two-dimensional agarose gel electrophoresis. J. Mol. Biol. 220, 843–855.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Krasilnikova, M.M., Mirkin, S.M. (2004). Analysis of Triplet Repeat Replication by Two-Dimensional Gel Electrophoresis. In: Kohwi, Y. (eds) Trinucleotide Repeat Protocols. Methods in Molecular Biology™, vol 277. Humana Press. https://doi.org/10.1385/1-59259-804-8:019

Download citation

  • DOI: https://doi.org/10.1385/1-59259-804-8:019

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-243-8

  • Online ISBN: 978-1-59259-804-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics