Skip to main content

Technologies of Disease-Related Gene Discovery Using Preclinical Models of Stroke

  • Protocol
Stroke Genomics

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 104))

  • 324 Accesses

Abstract

Stroke is a clinically defined neurological syndrome characterized by rapidly progressing symptoms and signs of focal loss of cerebral function. The initiation, propagation, and maturation of ischemic stroke are associated with de novo expression of multiple genes in endogenous brain tissues and infiltrated inflammatory cells. This chapter provides an overview for the use of state-of-the-art molecular biological approaches to investigate de novo gene expression in animal models of focal stroke, including subtractive cDNA library screening, mRNA differential display, suppression subtractive hybridization, representational difference analysis, serial analysis of gene expression, and microarrays. Identification of stroke-related gene expression will facilitate the understanding of the molecular basis of stroke pathogenesis and may provide a novel therapeutic intervention of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clark, R. K., Lee, E. V., Fish, C. J., et al. (1993) Development of tissue damage, inflammation and resolution following stroke: an immunohistochemical and quantitative planimetric study. Brain Res. Bull. 31, 565–572.

    Article  PubMed  CAS  Google Scholar 

  2. Garcia, J. H., Liu, K. F., Yoshida, Y., Chen, S., and Lian, J. (1994) Brain microvessels: factors altering their patency after the occlusion of a middle cerebral artery (Wistar rat). Am. J. Pathol. 145, 728–740.

    PubMed  CAS  Google Scholar 

  3. Wang, X. and Feuerstein, G. Z. (2000) Role of immune and inflammatory mediators in CNS injury. Drug News Perspect. 13, 133–140.

    Article  PubMed  CAS  Google Scholar 

  4. Abe, K., Sato, S., Kawagoe, J., Lee, T. H., and Kogure, K. (1993) Isolation and expression of an ischaemia-induced gene from gerbil cerebral cortex by subtractive hybridization. Neurol. Res. 15, 23–28.

    PubMed  CAS  Google Scholar 

  5. Wang, X., Barone, F. C., White, R. F., and Feuerstein, G. Z. (1998) Subtractive cloning identifies tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) increased gene expression following focal stroke. Stroke 29, 516–520.

    PubMed  CAS  Google Scholar 

  6. Wang, X., Yue, T. L., Barone, F. C, et al. (1995) Discovery of adrenomedullin in rat ischemic cortex and evidence for its role in exacerbating focal brain ischemic damage. Proc. Natl. Acad. Sci. USA 92, 11,480–11,484.

    Article  PubMed  CAS  Google Scholar 

  7. Tsuda, M., Imaizumi, K., Katayama, T., et al. (1997) Expression of zinc transporter gene, ZnT-1, is induced after transient forebrain ischemia in the gerbil. J. Neurosci. 17, 6678–6684.

    PubMed  CAS  Google Scholar 

  8. Wang, X., Yaish-Ohad, S., Li, X., Barone, F. C.m and Feuerstein, G. Z. (1998) Use of suppression subtractive hybridization strategy for discovery of increased tissue inhibitor of matrix metalloproteinase-1 gene expression in brain ischemic tolerance. J. Cereb. Blood Flow Metab. 18, 1173–1177.

    Article  PubMed  CAS  Google Scholar 

  9. Wang, X., Li, X., Yaish-Ohad, S., Sarau, H. M., Barone, F. C., and Feuerstein, G. Z. (1999) Molecular cloning and expression of the rat monocyte chemotactic protein-3 gene: a possible role in stroke. Mol. Brain Res. 71, 304–312.

    Article  PubMed  CAS  Google Scholar 

  10. Yokota, N., Uchijima, M., Nishizawa, S., Namba, H., and Koide, Y. (2001) Identification of differentially expressed genes in rat hippocampus after transient global cerebral ischemia using subtractive cDNA cloning based on polymerase chain reaction. Stroke 32, 168–174.

    PubMed  CAS  Google Scholar 

  11. Bates, S., Read, S. J., Harrison, D. C, et al. (2001) Characterisation of gene expression changes following permanent MCAO in the rat using subtractive hybridisation. Mol. Brain Res. 93, 70–80.

    Article  PubMed  CAS  Google Scholar 

  12. Trendelenburg, G., Prass, K., Priller, J., et al. (2002) Serial analysis of gene expression identifies metallothionein-II as major neuroprotective gene in mouse focal cerebral ischemia. J. Neurosci. 22, 5879–5888.

    PubMed  CAS  Google Scholar 

  13. Soriano, M. A., Tessier, M., Certa, U., and Gill, R. (2000) Parallel gene expression monitoring using oligonucleotide probe arrays of multiple transcripts with an animal model of focal ischemia. J. Cereb. Blood Flow Metab. 20, 1045–1055.

    Article  PubMed  CAS  Google Scholar 

  14. Jin, K., Mao, X. O., Eshoo, M. W., et al. (2001) Microarray analysis of hippocampal gene expression in global cerebral ischemia. Ann. Neurol. 50, 93–103.

    Article  PubMed  CAS  Google Scholar 

  15. Schmidt-Kastner, R., Zhang, B., Belayev, L., et al. (2002) DNA microarray analysis of cortical gene expression during early recirculation after focal brain ischemia in rat. Mol. Brain Res. 108, 81–93.

    Article  PubMed  CAS  Google Scholar 

  16. Liang, P. and Pardee, A. B. (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–971.

    Article  PubMed  CAS  Google Scholar 

  17. Diatchenko, L., Lau, Y. F., Campbell, A. P., et al. (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93, 6025–6030.

    Article  PubMed  CAS  Google Scholar 

  18. Lisitsyn, N., Lisitsyn, N., and Wigler, M. (1993) Cloning the differences between two complex genomes. Science 259, 946–951.

    Article  PubMed  CAS  Google Scholar 

  19. Hubank, M. and Schatz, D. G. (1994) Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res. 22, 5640–5648.

    Article  PubMed  CAS  Google Scholar 

  20. Velculescu, V. E., Zhang, L., Vogelstein, B., and Kinzler, K. W. (1995) Serial analysis of gene expression. Science 270, 484–487.

    Article  PubMed  CAS  Google Scholar 

  21. Boon, K., Osorio, E. C., Greenhut, S. F., et al. (2002) An anatomy of normal and malignant gene expression. Proc. Natl. Acad. Sci. USA 99, 11,287–11,292.

    Article  PubMed  CAS  Google Scholar 

  22. Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Wang, X. (2005). Technologies of Disease-Related Gene Discovery Using Preclinical Models of Stroke. In: Read, S.J., Virley, D. (eds) Stroke Genomics. Methods in Molecular Medicine, vol 104. Humana Press. https://doi.org/10.1385/1-59259-836-6:253

Download citation

  • DOI: https://doi.org/10.1385/1-59259-836-6:253

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-333-6

  • Online ISBN: 978-1-59259-836-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics