Skip to main content

Analysis of DNA Double-Strand Break Repair by Nonhomologous End Joining in Cell-Free Extracts From Mammalian Cells

  • Protocol
Molecular Toxicology Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 291))

Abstract

Double-strand breaks (DSBs) in genomic DNA are induced by ionizing radiation or radiomimetic drugs, but they also occur spontaneously during the cell cycle at quite significant frequencies. In vertebrate cells, nonhomologous DNA end joining (NHEJ) is considered the major pathway of DSB repair. NHEJ is able to rejoin two broken DNA termini directly end-to-end irrespective of sequence and structure. Genetic studies in various radiosensitive and DSB repair-deficient hamster cell lines have yielded insights into the factors involved in NHEJ. Studies in cell-free systems derived from Xenopus eggs and mammalian cells have allowed the dissection of the underlying mechanisms. In the present chapter, we describe a protocol for the preparation of whole cell extracts from mammalian cells and a plasmid-based in vitro assay that permits the easy analysis of the efficiency and fidelity of DSB repair via NHEJ in different cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haber, J. E. (1999) DNA recombination: the replication connection. Trends Biochem. Sci. 24, 271–275.

    Article  CAS  PubMed  Google Scholar 

  2. Pfeiffer, P., Goedecke, W., and Obe, G. (2000) Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis 15, 289–302.

    Article  CAS  PubMed  Google Scholar 

  3. Haber, J. E. (1999) DNA repair. Gatekeepers of recombination. Nature 398, 665–667.

    Article  CAS  PubMed  Google Scholar 

  4. Haber, J. E. (2000) Partners and pathways repairing a double-strand break. Trends Genet. 16, 259–264.

    Article  CAS  PubMed  Google Scholar 

  5. Haber, J. E. (2000) Recombination: a frank view of exchanges and vice versa. Curr. Opin. Cell Biol. 12, 286–292.

    Article  CAS  PubMed  Google Scholar 

  6. Pfeiffer, P. (1998) The mutagenic potential of DNA double-strand break repair. Toxicol. Lett. 96–97, 119–129.

    Article  PubMed  Google Scholar 

  7. Critchlow, S. E. and Jackson, S. P. (1998) DNA end-joining: from yeast to man. Trends Biochem. Sci. 23, 394–398.

    Article  CAS  PubMed  Google Scholar 

  8. Featherstone, C. and Jackson, S. P. (1999) DNA double-strand break repair. Curr. Biol. 9, R759–R761.

    Article  CAS  PubMed  Google Scholar 

  9. Feldmann, E., Schmiemann, V., Goedecke, W., Reichenberger, S., and Pfeiffer, P. (2000) DNA double-strand break repair in cell-free extracts from Ku80-deficient cells: implications for Ku serving as an alignment factor in non-homologous DNA end joining. Nucleic Acids Res. 28, 2585–2596.

    Article  CAS  PubMed  Google Scholar 

  10. Göttlich, B., Reichenberger, S., Feldmann, E., and Pfeiffer, P. (1998) Rejoining of DNA double-strand breaks in vitro by single-strand annealing. Eur. J. Biochem. 258, 387–395.

    Article  PubMed  Google Scholar 

  11. Bryant, P. E. (1984) Enzymatic restriction of mammalian cell DNA using Pvu II and Bam H1: evidence for the double-strand break origin of chromosomal aberrations. Int. J. Radiat. Biol. 46, 57–65.

    Article  CAS  Google Scholar 

  12. Natarajan, A. T. and Obe, G. (1984) Molecular mechanisms involved in the production of chromosomal aberrations. III. Restriction endonucleases. Chromosoma 90, 120–127.

    Article  CAS  PubMed  Google Scholar 

  13. Kabotyanski, E. B., Gomelsky, L., Han, J. O., Stamato, T. D., and Roth, D. B. (1998) Double-strand break repair in Ku86-and XRCC4-deficient cells. Nucleic Acids Res. 26, 5333–5342.

    Article  CAS  PubMed  Google Scholar 

  14. King, J. S., Valcarcel, E. R., Rufer, J. T., Phillips, J. W., and Morgan, W. F. (1993) Noncomplementary DNA double-strand-break rejoining in bacterial and human cells. Nucleic Acids Res. 21, 1055–1059.

    Article  CAS  PubMed  Google Scholar 

  15. Roth, D. B., Porter, T. N., and Wilson, J. H. (1985) Mechanisms of nonhomologous recombination in mammalian cells. Mol. Cell. Biol. 5, 2599–2607.

    CAS  PubMed  Google Scholar 

  16. Roth, D. B. and Wilson, J. H. (1986) Nonhomologous recombination in mammalian cells: role for short sequence homologies in the joining reaction. Mol. Cell. Biol. 6, 4295–4304.

    CAS  PubMed  Google Scholar 

  17. Daza, P., Reichenberger, S., Göttlich, B., Hagmann, M., Feldmann, E., and Pfeiffer, P. (1996) Mechanisms of nonhomologous DNA end-joining in frogs, mice and men. Biol. Chem. 377, 775–786.

    CAS  PubMed  Google Scholar 

  18. Pfeiffer, P. and Vielmetter, W. (1988) Joining of nonhomologous DNA double strand breaks in vitro. Nucleic Acids Res. 16, 907–924.

    Article  CAS  PubMed  Google Scholar 

  19. Baumann, P. and West, S. C. (1998) DNA end-joining catalyzed by human cell-free extracts. Proc. Natl. Acad. Sci. USA 95, 14066–14070.

    Article  CAS  PubMed  Google Scholar 

  20. Boe, S. O., Sodroski, J., Helland, D. E., and Farnet, C. M. (1995) DNA end-joining in extracts from human cells. Biochem. Biophys. Res. Commun. 215, 987–993.

    Article  CAS  PubMed  Google Scholar 

  21. Cheong, N., Okayasu, R., Shah, S., Ganguly, T., Mammen, P., and Iliakis, G. (1996) In vitro rejoining of double-strand breaks in cellular DNA by factors present in extracts of HeLa cells. Int. J. Radiat. Biol. 69, 665–677.

    Article  CAS  PubMed  Google Scholar 

  22. Cheong, N., Perrault, A. R., Wang, H., et al. (1999) DNA-PK-independent rejoining of DNA double-strand breaks in human cell extracts in vitro. Int. J. Radiat. Biol. 75, 67–81.

    Article  CAS  PubMed  Google Scholar 

  23. Derbyshire, M. K., Epstein, L. H., Young, C. S., Munz, P. L., and Fishel, R. (1994) Nonhomologous recombination in human cells. Mol. Cell. Biol. 14, 156–169.

    CAS  PubMed  Google Scholar 

  24. Labhart, P. (1999) Ku-dependent nonhomologous DNA end joining in Xenopus egg extracts. Mol. Cell. Biol. 19, 2585–2593.

    CAS  PubMed  Google Scholar 

  25. Lakshmipathy, U. and Campbell, C. (1999) Double strand break rejoining by mammalian mitochondrial extracts. Nucleic Acids Res. 27, 1198–1204.

    Article  CAS  PubMed  Google Scholar 

  26. Mason, R. M., Thacker, J., and Fairman, M. P. (1996) The joining of non-complementary DNA double-strand breaks by mammalian extracts. Nucleic Acids Res. 24, 4946–4953.

    Article  CAS  PubMed  Google Scholar 

  27. Nicolas, A. L. and Young, C. S. (1994) Characterization of DNA end joining in a mammalian cell nuclear extract: junction formation is accompanied by nucleotide loss, which is limited and uniform but not site specific. Mol. Cell. Biol. 14, 170–180.

    CAS  PubMed  Google Scholar 

  28. Nicolas, A. L., Munz, P. L., and Young, C. S. (1995) A modified single-strand annealing model best explains the joining of DNA double-strand breaks mammalian cells and cell extracts. Nucleic Acids Res. 23, 1036–1043.

    Article  CAS  PubMed  Google Scholar 

  29. North, P., Ganesh, A., and Thacker, J. (1990) The rejoining of double-strand breaks in DNA by human cell extracts. Nucleic Acids Res. 18, 6205–6210.

    Article  CAS  PubMed  Google Scholar 

  30. Sathees, C. R. and Raman, M. J. (1999) Mouse testicular extracts process DNA double-strand breaks efficiently by DNA end-to-end joining. Mutat. Res. 433, 1–13.

    CAS  PubMed  Google Scholar 

  31. Labhart, P. (1999) Nonhomologous DNA end joining in cell-free systems. Eur. J. Biochem. 265, 849–861.

    Article  CAS  PubMed  Google Scholar 

  32. Pfeiffer, P., Thode, S., Hancke, J., and Vielmetter, W. (1994) Mechanisms of overlap formation in nonhomologous DNA end joining. Mol. Cell. Biol. 14, 888–895.

    CAS  PubMed  Google Scholar 

  33. Thode, S., Schäfer, A., Pfeiffer, P., and Vielmetter, W. (1990) A novel pathway of DNA end-to-end joining. Cell 60, 921–928.

    Article  CAS  PubMed  Google Scholar 

  34. Sharma, R. C., and Schimke R. T. (1996) Preparation of electrocompetent E. coli using salt-free growth medium. BioTechniques 20, 42–44.

    CAS  PubMed  Google Scholar 

  35. Zdzienicka, M. Z. (1999) Mammalian X-ray-sensitive mutants which are defective in nonhomologous (illegitimate) DNA double-strand break repair. Biochimie 81, 107–116.

    Article  CAS  PubMed  Google Scholar 

  36. Pfeiffer, P., Thode, S., Hancke, J., Keohavong, P., and Thilly, W. G. (1994) Resolution and conservation of mismatches in DNA end joining. Mutagenesis 9, 527–535.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Pfeiffer, P., Feldmann, E., Odersky, A., Kuhfittig-Kulle, S., Goedecke, W. (2005). Analysis of DNA Double-Strand Break Repair by Nonhomologous End Joining in Cell-Free Extracts From Mammalian Cells. In: Keohavong, P., Grant, S.G. (eds) Molecular Toxicology Protocols. Methods in Molecular Biology™, vol 291. Humana Press. https://doi.org/10.1385/1-59259-840-4:351

Download citation

  • DOI: https://doi.org/10.1385/1-59259-840-4:351

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-084-7

  • Online ISBN: 978-1-59259-840-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics