Skip to main content

MicroRNA Biogenesis: Isolation and Characterization of the Microprocessor Complex

  • Protocol
MicroRNA Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 342))

Abstract

The recently discovered microRNAs (miRNAs) are a large family of small regulatory RNAs that have been implicated in controlling diverse pathways in a variety of organisms (1,2). For posttranscriptional gene silencing, one strand of the miRNA is used to guide components of the RNA interference machinery, including Argonaute 2, to messenger RNAs (mRNAs) with complementary sequences (3,4). Thus, targeted mRNAs are either cleaved by the endonuclease Argonaute 2 (5,6), or protein synthesis is blocked by an as yet uncharacterized mechanism (7,8). Genes encoding miRNAs are transcribed as long primary miRNAs (pri-miRNAs) that are sequentially processed by components of the nucleus and cytoplasm to yield a mature, approx 22-nucleotide (nt)-long miRNA (9). Two members of the ribonuclease (RNase) III endonuclease protein family, Drosha and Dicer, have been implicated in this two-step processing (1013). To further our understanding of miRNA biogenesis and function it will be essential to identify the protein complexes involved. We were interested in defining the proteins required for the initial nuclear processing of pri-miRNAs to the approx 60- to 70-nt stem-loop intermediates known as precursor miRNAs (pre-miRNAs) (9,10). This led to our identification of a protein complex we termed Microprocessor, which is necessary and sufficient for processing pri-miRNA to premiRNAs (14). The Microprocessor complex comprises Drosha and the double-stranded RNAbinding protein DiGeorge syndrome critical region 8 gene (DGCR8), which is deleted in DiGeorge syndrome (15,16). In this chapter, we detail the methods used for the biochemical isolation and identification of the Microprocessor complex from human cells. We include a protocol for the in vitro analysis of pri-miRNA processing activity of the purified Microprocessor complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.

    Article  CAS  PubMed  Google Scholar 

  2. Grishok A., Pasquinelli A. E., Conte D., et al. (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34.

    Article  CAS  PubMed  Google Scholar 

  3. Sontheimer E. J. (2005) Assembly and function of RNA silencing complexes. Nat. Rev. Mol. Cell Biol. 6, 127–138.

    Article  CAS  PubMed  Google Scholar 

  4. Hammond S. M., Boettcher S., Caudy A. A., Kobayashi R., and Hannon G. J. (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150.

    Article  CAS  PubMed  Google Scholar 

  5. Liu J., Carmell M. A., Rivas F. V., et al. (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441.

    Article  CAS  PubMed  Google Scholar 

  6. Meister G., Landthaler M., Patkaniowska A., Dorsett Y., Teng G., and Tuschl T. (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197.

    Article  CAS  PubMed  Google Scholar 

  7. Olsen P. H. and Ambros V. (1999) The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671–680.

    Article  CAS  PubMed  Google Scholar 

  8. Zeng Y., Yi R., and Cullen B. R. (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc. Natl. Acad. Sci. USA 100, 9779–9784.

    Article  CAS  PubMed  Google Scholar 

  9. Lee Y., Jeon K., Lee J. T., Kim S., and Kim V. N. (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 21, 4663–4670.

    Article  CAS  PubMed  Google Scholar 

  10. Lee Y., Ahn C., Han J., et al. (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419.

    Article  CAS  PubMed  Google Scholar 

  11. Bernstein E., Caudy A. A., Hammond S. M., and Hannon G. J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366.

    Article  CAS  PubMed  Google Scholar 

  12. Ketting R. F., Fischer S. E., Bernstein E., Sijen T., Hannon G. J., and Plasterk R.H. (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659.

    Article  CAS  PubMed  Google Scholar 

  13. Hutvagner G., McLachlan J., Pasquinelli A. E., Balint E., Tuschl T., and Zamore P. D. (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838.

    Article  CAS  PubMed  Google Scholar 

  14. Gregory R. I., Yan K. P., Amuthan G., et al. (2004) The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240.

    Article  CAS  PubMed  Google Scholar 

  15. Shiohama A., Sasaki T., Noda S., Minoshima S., and Shimizu N. (2003) Molecular cloning and expression analysis of a novel gene DGCR8 located in the DiGeorge syndrome chromosomal region. Biochem. Biophys. Res. Commun. 304, 184–190.

    Article  CAS  PubMed  Google Scholar 

  16. Lindsay E. A. (2001) Chromosomal microdeletions: dissecting del22q11 syndrome. Nat. Rev. Genet. 2, 58–68.

    Article  Google Scholar 

  17. Bochar D. A., Wang L., Beniya H., et al. (2000) BRCA1 is associated with a human SWI/ SNF-related complex: linking chromatin remodeling to breast cancer. Cell 102, 257–265.

    Article  CAS  PubMed  Google Scholar 

  18. Barak O., Lazzaro M. A., Lane W. S., Speicher D. W., Picketts D. J., and Shiekhattar R. (2003) Isolation of human NURF: a regulator of Engrailed gene expression. EMBO J. 22, 6089–6100.

    Article  CAS  PubMed  Google Scholar 

  19. Dignam J. D., Lebovitz R. M., and Roeder R. G. (1983) Accurate transcription initiationby RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489.s

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Gregory, R.I., Chendrimada, T.P., Shiekhattar, R. (2006). MicroRNA Biogenesis: Isolation and Characterization of the Microprocessor Complex . In: Ying, SY. (eds) MicroRNA Protocols. Methods in Molecular Biology™, vol 342. Humana Press. https://doi.org/10.1385/1-59745-123-1:33

Download citation

  • DOI: https://doi.org/10.1385/1-59745-123-1:33

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-581-1

  • Online ISBN: 978-1-59745-123-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics