Skip to main content

Techniques in the Study of Blood Flow through both Constrictions and Post-Stenotic Dilatations in Arteries

  • Reference work entry
Computational Methods in Biophysics, Biomaterials, Biotechnology and Medical Systems
  • 631 Accesses

35.1 9.1 Introduction

35.1.1 1.1 Motivation for application of modelling techniques

Coronary artery disease is the largest single cause of mortality in developed nations. In 1994 it was responsible for 24.13% of deaths in Australia, and 21.34% in the USA [59]. It occurs when the coronary arteries narrow to such an extent that they are unable to transport sufficient blood to the heart muscle for it to function efficiently. The two main causes of death from coronary artery disease are rupture of the plaque causing sudden occlusion of the artery and the slow build up of a stenosis in the artery due to atherosclerosis. Reduction in blood flow caused by stenosis build up also causes debilitation. There is considerable interest in techniques that predict the resistance to flow caused by the impingement of atherosclerotic lesions into the lumen and the subsequent extra shear stresses on the wall.

In spite of the large number of studies into the area the causes of arteriosclerosis are...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

references

  • C. Alonso, A. Pries, O. Kiesslich, D. Lerche and P. Gaehtgens. Transient rheological behavior of blood in low-shear tube flow: velocity profiles and effective viscosity. Am. J. Physiol. 268: 25–32, 1995.

    Google Scholar 

  • K. Ang and J. Mazumdar. Mathematical modelling of triple arterial stenosis. Aust. Phys. Engng. Sci. Med. 18: 89–94, 1995.

    Google Scholar 

  • J. Bassingthwaighte and D. Beard. Fractal 15o-labeled water washout from the heart. Circ. Res. 77: 1212–1221, 1995.

    Article  Google Scholar 

  • E. Benditt and J. Benditt. Evidence for a monoclonal origin of human atherosclerotic plaques. Proc. Natl. Acad. Sci. 70: 1753–1756, 1973.

    Article  Google Scholar 

  • C. Bertram. Energy dissipation and pulse wave attenuation in the canine carotid artery. J. Biomech. 1061–1073, 1980.

    Google Scholar 

  • D. Blankenhorn and D. Kramsch. Reversal of atherosis and sclerosis: the two components of atherosclerosis. Circulation 79: 1–7. 1989.

    Article  Google Scholar 

  • D. Braasch and B. Witte. Correlation between shear dependent blood viscosity, electrical resistance and calculated width of the marginal layer in blood perfused capillary tubes. Int. J. Microcirc. Clin. Exp. 5: 347–357, 1987.

    Google Scholar 

  • G. Bugliarello and J. Sevillo. Velocity distrubution and other characteristics of steady and pulsatile blood flow in finite glass tubes. Biorheology 7: 85–107, 1970.

    Google Scholar 

  • N. Casson. A Flow Equation for Pigment Oil Suspensions of the Printing Ink Type. London, Pergamon Press, 1959.

    Google Scholar 

  • S. Cavalcanti. Haemodynamics of an artery with mild stenosis. J. Biomech. 28: 387–399, 1995.

    Article  Google Scholar 

  • S. Chakravarty. Effects of stenosis on the flow-behaviour of blood in an artery. Int. J. Engng. Sci. 25: 1003–1016, 1987.

    Article  MATH  Google Scholar 

  • S. Chakravarty and A. Chowdhury. Response of blood flow through an artery under stenotic conditions. Rheologica Acta 27: 418–427, 1988.

    Article  Google Scholar 

  • S. Chakravarty and A. Datta. Effects of stenosis on arterial rheology through a mathematical model. Math. Comput. Modelling 12: 1601–1612, 1989.

    Article  MATH  Google Scholar 

  • S. Chakravarty and A. Datta, Dynamic response of arterial blood flow in the presence of multi-stenoses. Mathl. Comput. Modelling 13: 37–55, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  • S. Chakravarty and A. Datta. Dynamic response of stenotic blood flow in vivo. Mathl. Comput. Modelling 16: 3–20, 1992.

    Article  MATH  Google Scholar 

  • S. Charm and G. Kurland. Blood Flow and Microcirculation. Wiley, New York, 1975.

    Google Scholar 

  • P. Chaturani and S. Narasimman. Theory for flow of casson and herschel-bulkley fluids in cone-plate viscometers. Biorheology 25: 199–207, 1988.

    Google Scholar 

  • P. Chaturani and V. Palanisamy. Casson fluid model for pulsatile flow of blood under periodic body acceleration. Biorheology 27: 619–630, 1990.

    Google Scholar 

  • P. Chaturani and R. Samy. Pulsatile flow of casson’s fluid through stenosed arteries with applications to blood flow. Biorheology 23: 499–511, 1986.

    Google Scholar 

  • P. Chaturani and R. Samy. A study of non-newtonian aspects of blood flow through stenosed arteries and its applications in arterial diseases. Biorheology 22: 521–531, 1986.

    Google Scholar 

  • Y. Cho and K. Kensey. Effects of the non-newtonian viscosity of blood on flows in a diseased arterial vessel. part 1: Steady flows. Biorheology 28: 241–262, 1991.

    Google Scholar 

  • G. Cokelet. The Rheology of Human Blood. Englewood Cliffs, Prentice-Hall, New Jersey, 1972.

    Google Scholar 

  • G. Cokelet and H. Goldsmith. Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates. Circ. Res. 68: 1–77, 1991.

    Article  Google Scholar 

  • P. Consigny. Pathogenesis of atherosclerosis. J. Roentgen. 164: 553–558, 1995.

    Google Scholar 

  • R. Cox. Viscoelastic properties of canine pulmonary arteries. Am. J. Physiol. 246: 90–96, 1984.

    Google Scholar 

  • B. Das and R. Batra. Non-newtonian flow of blood in an arteriosclerotic blood vessel with rigid permiable walls. J. Theor. Biol. 175: 1–11, 1995.

    Article  Google Scholar 

  • R. Dash, G. Jayaraman and K. Mehta. Estimation of increased flow resistance in a narrow catheterized artery-a theoretical model. J. Biomech. 29: 917–930, 1996.

    Article  Google Scholar 

  • M. Deakin. A note on the poiseuille-type flow of a casson fluid. Bull. Math. Biophys. 31: 71–74, 1969.

    Article  MATH  Google Scholar 

  • L. Demer, K. Watson and K. Bostrom. Mechanism of calcification in atherosclerosis. Trends Cardiovasc. Med. 4: 45–49, 1994.

    Article  Google Scholar 

  • J. Forrester and D. Young. Flow through a converging diverging tube and its implications in occlusive vascular disease-i. J. Biomech. 3: 297–305, 1970.

    Article  Google Scholar 

  • J. Forrester and D. Young. Flow through a converging diverging tube and its implications in occlusive vascular disease-ii. J. Biomech. 3: 307–316, 1970.

    Article  Google Scholar 

  • Y. Fung. Biomechanics: Circulation. Springer-Verlag, New York, 1995.

    Google Scholar 

  • W. Glanze, K. Anderson, and L. Anderson (Eds), Mosby’s Medical, Nursing and Allied Health Dictionary, 3rd edn. The C.V. Mosby Company, St. Louis, 1990.

    Google Scholar 

  • H. Goldsmith and J. Marlow. Flow behavior of erythrocytes ii. particle motions in concentrated suspensions of ghost cells. Colloid Inter. Sci. 71: 383–407, 1979.

    Article  Google Scholar 

  • K. Haldar. Oscillatory flow of blood in a stenosed artery. Bull. Math. Biol. 49: 279–287, 1987.

    MathSciNet  MATH  Google Scholar 

  • D. Halpern and T. Secomb. The squeezing of red blood cells through capillaries with near-minimal diameters. J. Fluid Mech. 203: 381–400, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  • G. Hanson, L. Jonasson, P. Seifert and S. Stemme. Immune mechanisms in atherosclerosis. Arteriosclerosis 9: 567–578, 1989.

    Article  Google Scholar 

  • R. Haynes and A. Burton. Role of non-Newtonian behaviour of blood in haemodynamics. Am. J. Physiol. 197: 943, 1959.

    Google Scholar 

  • H. Herschel and R. Bulkley. Konsistenzmessungen von gummi-benzollosungen. Koll. Zeitschr. 23: 291–300, 1926.

    Article  Google Scholar 

  • D. Hershey and S. Cho. Blood flow in rigid tubes: Thickness and slip velocity of plasma film at the wall. J. Appl. Physiol. 21: 27–32, 1966.

    Google Scholar 

  • A. Hudetz and E. Monos. A semi-empirical nonlinear viscoelastic mode of the arterial wall. Acta Physiol. Hung. 67: 173–191, 1986.

    Google Scholar 

  • N. Iida. Influence of plasma layer on steady blood flow in microvessels. Japan. J. Appl. Phys. 17: 12, 1978.

    Google Scholar 

  • P. Johnson and D. Kilpatrick. Mathematical modelling of flow through an irregular arterial stenosis. J. Biomech. 24: 1069–1077, 1991.

    Article  Google Scholar 

  • P. Johnson and D. Kilpatrick. Mathematical modelling of paired stenoses. In: K. Ripley (Ed.), Computers in Cardiology, pp. 229–232. IEEE Computer Society press, 1991.

    Google Scholar 

  • M. Kawaguti and A. Hamano. Numerical study on post-stenotic dilatation. Biorheology 20: 507–518, 1983.

    Google Scholar 

  • D. Ku, D. Giddens, C. Zarins and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5: 293–302, 1985.

    Article  Google Scholar 

  • J. Linehan, C. Dawson, D. Rickaby and T. Bronikowski. Pulmonary vascular compliance and viscoelasticity. J. Appl. Physiol. 61: 1802–1814, 1986.

    Google Scholar 

  • H. Loree, B. Tobias, L. Gibson, R. Kamm, D. Small and R. Lee. Mechanical properties of model atherosclerotic lesion lipid pools. Arteroscler. Thromb. 14: 230–234, 1994.

    Article  Google Scholar 

  • D. MacDonald. On steady flow through modelled vascular stenoses. J. Biomech. 12: 13–20, 1979.

    Article  Google Scholar 

  • J. Mazumdar. Biofluid Mechanics. [River Edge] NJ., World Scientific, 1992.

    Google Scholar 

  • E. Merrill, C. Cheng and G. Pelletier. Yield stress of normal human blood as a function of endogenous fibrinogen. J. Appl. Physiol. 26: 1–3, 1969.

    Google Scholar 

  • E. Merrill, G. Cokelet, A. Britten and R. Wells. Non-newtonian rheology of human blood effect of fibrinogen deduced by subtraction. Circulat. Res. 13: 48, 1963.

    Article  Google Scholar 

  • J. Misra and B. Kar. Momentum integral method for studying flow characteristics of blood through a stenosed vessel. Biorheology 26: 23–35, 1989.

    Google Scholar 

  • K. Moore. Clinically Oriented Anatomy, 3rd edn. Williams and Wilkins, Baltimore, 1990.

    Google Scholar 

  • B. Morgan and D. Young. An integral method for the analysis of flow in arterial stenoses. Bull. Math. Biol. 36: 39–53, 1974.

    MATH  Google Scholar 

  • C. Morris, D. Rucknagel, R. Shukla, R. Gruppo, C. Smith and P. Blacksear. Evaluation of the yield stress of normal blood as a function of fibrinogen concentration and hematocrit. Microvasc. Res. 37: 323–338, 1989.

    Article  Google Scholar 

  • C. Morris, C. Smith and P. Blackshear. A new method for measuring the yield stress in thin layers of sedimenting blood. Biophys. J. 52: 229–240, 1987.

    Article  Google Scholar 

  • M. Nakamura and T. Sawada. Numerical study on the flow of a non-newtonian fluid through an axisymmetric stenosis. J. Biomech. Eng. 110: 137–143, 1988. National Heart Foundation. Heart and stroke facts 1996. Annual report, National Heart Foundation of Australia, PO Box 2, Woden, ACT, 2606, January 1996.

    Article  Google Scholar 

  • S. Oka. Motion of plasma in a capilliary. Japan. J. Appl. Phys. 10: 287, 1971.

    Article  Google Scholar 

  • K. Perktold and G. Rappitsch. Mathematical modeling of arterial blood flow and correlation to atherosclerosis. Technol. Health Care 3: 139–151, 1995.

    Google Scholar 

  • B. Pincombe and J. Mazumdar. A mathematical study of blood flow through viscoelastic walled stenosed arteries. Aust. Phys. Engng. Sci. Med. 18: 81–88, 1995.

    Google Scholar 

  • B. Pincombe and J. Mazumdar. The effects of post-stenotic dilatations on the flow of a blood analogue through stenosed coronary arteries. Math. Comp. Modelling 25: 57–70, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  • J. Poiseuille. Flow in living capillaries. Compt. Rend. Académie des Sci. 7: 44, 1839.

    Google Scholar 

  • A. Pries, D. Neuhaus and P. Gaehtgens. Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Physiol. 263: 1770–1778, 1992.

    Google Scholar 

  • M. Quemada. Hemorheology, erythrocyte aggregation and non-Newtonian properties of blood: new rheological law and the validity of Casson’s law for blood. C. R. Acad. Sci. Hebd. Seances. Acad. Sci. D 15: 747–750, 1975.

    Google Scholar 

  • S. Rodbard, K. Ikeeda and M. Montes. An analysis of mechanisms of post stenotic dilatation. Angiology 18: 349–367, 1967.

    Article  Google Scholar 

  • C. Rodkiewicz, P. Sinha and J. Kennedy. On the application of a constitutive equation for whole human blood. J. Biomech. Eng. 112: 198–206, 1990.

    Article  Google Scholar 

  • R. Ross. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362: 801–809, 1993.

    Article  Google Scholar 

  • E. Rosset, C. Brunet, R. Rieu, P. Rolland, J. Pellissier, P. Magnan, P. Foulon, A. Drizenko, M. Laude, A. Branchereau and A. Friggi. Viscoelastic properties of human arteries: methodology and preliminary results. Surg. Radiol. Anat. 18: 89–96, 1996.

    Article  Google Scholar 

  • P. Saikku, M. Leinonen, K. Mattila, M. Ekman, M. Nieminen, P. Mäkelä, J. Huttunen and V. Valtonen. Serological evidence of an association of a novel chlamydia, twar, with chronic coronary heart disease and acute myocardial infarction. Lancet 8618: 983–986, 1988.

    Article  Google Scholar 

  • H. Sakai, K. Hamada, S. Takeoka, H. Nishide and E. Tsuchida. Physical properties of hemoglobin vesicles as red cell substitutes. Biotechnol. Prog. 12: 119–125, 1996.

    Article  Google Scholar 

  • G. Scott-Blair. Elementry Rheology. Academic Press, New York, 1969.

    Google Scholar 

  • J. Shukla, R. Parihar and S. Gupta. Effects of peripheral layer viscosity on blood flow through the artery with mild stenosis. Bull. Math. Biol. 42: 797–805, 1980.

    MATH  Google Scholar 

  • J. Shukla, R. Parihar and B. Rao. Effects of stenosis on non-newtonian flow of the blood in an artery. Bull. Math. Biol. 42: 283–294, 1980.

    MATH  Google Scholar 

  • J. Shukla, R. Parihar, B. Rao and S. Gupta. Effects of peripheral-layer viscosity on peristaltic transport of a bio-fluid. J. Fluid Mech. 97: 225–237, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  • V. Sud and G. Sekhon. Steady flow of a viscous fluid through a network of tubes with applications to the human arterial system. J. Biomech. 23: 513–527, 1990.

    Article  Google Scholar 

  • V. Sud, R. Srinivasan, J. Charles and M. Bungo. Mathematical modelling of the human cardiovascular system in the presence of stenosis. Phys. Med. Biol. 38: 369–379, 1993.

    Article  Google Scholar 

  • C. Tu and M. Deville. Pulsatile flow of non-newtonian fluids through arterial stenoses. J. Biomech. 29: 899–908, 1996.

    Article  Google Scholar 

  • X. Wang and J. Stoltz. Importance of non-newtonian rheological properties of blood in erethrocyte transport. J. Mal. Vasc. 19: 137–141, 1994.

    Google Scholar 

  • J. Wilcox. Analysis of local gene expression in human atherosclerotic plaques by in situ hybridization. Trends Cardiovasc. Med. 2: 17–23, 1991.

    Article  Google Scholar 

  • A. Yoganathan, J. Ball, Y. Woo, E. Philpot, H. Sung, R. Franch and D. Sahn. Steady flow velocity measurements in a pulmonary artery model with varying degrees of pulmonic stenosis. J. Biomech. 19: 129–146, 1986.

    Article  Google Scholar 

  • D. Young. Effect of a time dependant stenosis on flow through a tube. J. Engng. Ind., Trans. Am. Soc. Mech. Eng. 90: 248–254, 1968.

    Google Scholar 

  • J. Young, R. Vaishnav and D. Patel. Nonlinear anisotropic viscoelastic properties of canine arterial segments. Biomechanics 10: 549–559, 1977.

    Article  Google Scholar 

Download references

Authors

Editor information

Cornelius T. Leondes

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this entry

Cite this entry

Leondes, C.T. (2003). Techniques in the Study of Blood Flow through both Constrictions and Post-Stenotic Dilatations in Arteries. In: Leondes, C.T. (eds) Computational Methods in Biophysics, Biomaterials, Biotechnology and Medical Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-48329-7_35

Download citation

  • DOI: https://doi.org/10.1007/0-306-48329-7_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7110-2

  • Online ISBN: 978-0-306-48329-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics