Skip to main content

Bilevel Programming: Optimality Conditions and Duality

  • Reference work entry
Encyclopedia of Optimization

The bilevel programming problem (abbreviation: BPP) is a mathematical program in two variables x and θ, where x = x°(θ) is an optimal solution of another program. Specifically, BPP can be formulated in terms of two ordered objective functions φ and Ψ as follows:

(1)

where x = x°(θ) is an optimal solution of the program

(2)

Here the functions φ, Ψ, f i, g j : R n × R m → R, i ∈ P, j ∈ Q, are assumed to be continuous; x ∈ R n, θ ∈ R m; P, Q are finite index sets. Program (1) is often called the upper ( first level , outer , leader’s ) problem; then (2) is the lower ( second level , inner , follower’s ) problem. Many mathematical programs, such as minimax problems, linear integer, bilinear and quadratic programs, can be stated as special cases of bilevel programs. In view of the so-called Reduction Ansatz, developed in [18], [44], semi-infinite programs can be considered as special cases of bilevel programs. For stability and deformations of these see, e.g., [20], [21]. Problems...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bank, B., Guddat, J., Klatte, D., Kummer, B., and Tammer, K.: Nonlinear parametric optimization, Akad. Verlag 1982.

    Google Scholar 

  2. Bard, J.: ‘Optimality conditions for the bilevel programming problem’, Naval Res. Logist. Quart.31 (1984), 13–26.

    MathSciNet  MATH  Google Scholar 

  3. Bard, J.: ‘Convex two-level optimization’, Math. Program.40 (1988), 15–27.

    MathSciNet  MATH  Google Scholar 

  4. Ben-Ayed, O., and Blair, C.: ‘Computational difficulties of bilevel linear programming’, Oper. Res.38 (1990), 556–560.

    MathSciNet  MATH  Google Scholar 

  5. Ben-Israel, A., Ben-Tal, A., and Zlobec, S.: Optimality in nonlinear programming: A feasible directions approach, Wiley/Interscience 1981.

    Google Scholar 

  6. Berge, C.: Topological spaces, Oliver and Boyd 1963.

    Google Scholar 

  7. Bi, Z., and Calamai, P.: ‘Optimality conditions for a class of bilevel programming problems’, Techn. Report Dept. Systems Design Engin. Univ. Waterloo, no. 191-O-191291 (1991).

    Google Scholar 

  8. Bracken, J., Falk, J., and McGill, J.: ‘Equivalence of two mathematical programs with optimization problems in the constraints’, Oper. Res.22 (1974), 1102–1104.

    MathSciNet  MATH  Google Scholar 

  9. Calamai, P., and Vicente, L.N.: ‘Generating linear and linear-quadratic bilevel programming problems’, SIAM J. Sci. Statist. Comput.14 (1993), 770–782.

    MathSciNet  MATH  Google Scholar 

  10. Candler, W.: ‘A linear bilevel programming algorithm: A comment’, Computers Oper. Res.15 (1988), 297–298.

    MathSciNet  MATH  Google Scholar 

  11. Chen, Y., and Florian, M.: ‘The nonlinear bilevel programming problem: formulations, regularity and optimality conditions’, Optim.32 (1995), 193–209.

    MathSciNet  MATH  Google Scholar 

  12. Clarke, P., and Westerberg, A.: ‘A note on the optimality conditions for the bilevel programming problem’, Naval Res. Logist. Quart.35 (1988), 413–418.

    Google Scholar 

  13. Dempe, S.: ‘A necessary and sufficient optimality condition for bilevel programming problems’, Optim.25 (1992), 341–354.

    MathSciNet  MATH  Google Scholar 

  14. Dempe, S.: ‘On the leader’s dilemma and a new idea for attacking bilevel programming problems’, Preprint Techn. Univ. Chemnitz (1997).

    Google Scholar 

  15. Floudas, C.A., and Zlobec, S.: ‘Optimality and duality in parametric convex lexicographic programming’, in P.M. Pardalos A. Migdalas and P. Värbrand (eds.): Multilevel Optimization: Algorithms and Applications, Kluwer Acad. Publ. 1998, pp. 359–379.

    Google Scholar 

  16. Harker, P., and Pang, J.-S.: ‘Existence of optimal solutions to mathematical programs with equilibrium constraints’, Oper. Res. Lett.7 (1988), 61–64.

    MathSciNet  MATH  Google Scholar 

  17. Haurie, A., Savard, G., and White, D.: ‘A note on: An efficient point algorithm for a linear two-stage optimization problem’, Oper. Res.38 (1990), 553–555.

    MATH  Google Scholar 

  18. Hettich, R., and Jongen, H.Th.: ‘Semi-infinite programming: conditions of optimality and applications’, in J. Stoer (ed.): Optimization Techniques, Part 2, Vol. 7 of Lecture Notes Control Inform. Sci., Springer, 1978, pp. 1–11.

    Google Scholar 

  19. Ishizuka, Y.: ‘Optimality conditions for quasi-differentiable programs with applications to two-level optimization’, SIAM J. Control Optim.26 (1988), 1388–1398.

    MathSciNet  MATH  Google Scholar 

  20. Jongen, H.Th., Rückmann, J.-J, and Stein, O.: ‘Generalized semi-infinite optimization: A first order optimality condition and examples’, Math. Program.83 (1998), 145–158.

    Google Scholar 

  21. Jongen, H.Th., and Rückmann, J.-J.: ‘On stability and deformation in semi-infinite optimization’, in R. Reemtsen and J.-J. Rückmann (eds.): Semi-Infinite Programming, Kluwer Acad. Publ., 1998, pp. 29–67.

    Google Scholar 

  22. Kolstad, C.D.: ‘A review of the literature on bilevel mathematical programming’, Techn. Report Los Alamos Nat. Lab. no. LA-10284-MS, UC-32 (Oct. 1985).

    Google Scholar 

  23. Lignola, M.B., and Morgan, J.: ‘Topological existence and stability for Stackelberg problems’, J. Optim. Th. Appl.84 (1995), 145–169.

    MathSciNet  MATH  Google Scholar 

  24. Lignola, M.B., and Morgan, J.: ‘Existence of solutions to generalized bilevel programing problem’, in A. Migdalas P.M. Pardalos and P. Värbrand (eds.): Multilevel Optimization: Algorithms and Applications, Kluwer Acad. Publ. 1998, pp. 315–332.

    Google Scholar 

  25. Liu, Y., and Hart, S.: ‘Characterizing an optimal solution to the linear bilevel programming problem’, Europ. J. Oper. Res.166 (1994), 164–166.

    Google Scholar 

  26. Loridan, P., and Morgan, J.: ‘New results on approximate solutions in two-level optimization’, Optim.20 (1989), 819–836.

    MathSciNet  MATH  Google Scholar 

  27. Mallozzi, L., and Morgan, J.: ‘Weak Stackelberg problem and mixed solutions under data perturbations’, Optim.32 (1995), 269–290.

    MathSciNet  MATH  Google Scholar 

  28. Marcotte, P., and Savard, G.: ‘A note on Pareto optimality of solutions to the linear bilevel programming problem’, Comput. Oper. Res.18 (1991), 355–359.

    MathSciNet  MATH  Google Scholar 

  29. Migdalas, A.: ‘When is a Stackelberg equilibrium Pareto optimum?’, in P.M. Pardalos, Y. Siskos and C. Zopounidis (eds.): Advances in Multicriteria Analysis, Kluwer Acad. Publ. 1995, pp. 175–181.

    Google Scholar 

  30. Migdalas, A., and Pardalos, P.M.: ‘Editorial: Hierarchical and bilevel programming’, J. Global Optim.8 (1996), 209–215.

    MathSciNet  Google Scholar 

  31. A. Migdalas, P.M. Pardalos and Värbrand P. (eds.): Multilevel optimization: Algorithms and applications, Kluwer Acad. Publ. 1998, pp. 29–67.

    Google Scholar 

  32. Outrata, J.: ‘Necessary optimality conditions for Stackelberg problems’, J. Optim. Th. Appl.76 (1993), 305–320.

    MathSciNet  MATH  Google Scholar 

  33. Savard, G., and Gauvin, J.: ‘The steepest descent direction for the nonlinear bilevel programming problem’, Oper. Res. Lett.15 (1994), 275–282.

    MathSciNet  Google Scholar 

  34. Tammer, K., and Rückmann, J.-J.: ‘Relations between the Karush-Kuhn-Tucker points of a nonlinear optimization problem and of a generalized Lagrange dual’, in H.-J Sebastian and K. Tammer (eds.): System Modelling and Optimization, 143 of Lecture Notes Control Inform. Sci., Springer 1990.

    Google Scholar 

  35. Trujillo-Cortez, R.: ‘LFS functions in stable bilevel programming’, PhD Thesis Dept. Math. and Statist. McGill Univ.July (1997).

    Google Scholar 

  36. Trujillo-Cortez, R.: ‘Stable bilevel programming and applications’, PhD Thesis McGill Univ. (2000), in preparation.

    Google Scholar 

  37. Tuy, H.: ‘Bilevel linear programming, multiobjective programming, and monotonic reverse convex programming’, in A. Migdalas, P.M. Pardalos and P. VÄrbrand (eds.): Multilevel Optimization: Algorithms and Applications, Kluwer Acad. Publ. 1998, 295–314.

    Google Scholar 

  38. Ünlü, G.: ‘A linear bilevel programming algorithm based on bicriteria programming’, Computers Oper. Res.14 (1987), 173–179.

    MATH  Google Scholar 

  39. Vicente, L.N., and Calamai, P.H.: ‘Bilevel and multilevel programming: A bibliography review’, J. Global Optim.5 (1994), 291–306.

    MathSciNet  MATH  Google Scholar 

  40. Vicente, L.N., and Calamai, P.H.: ‘Geometry and local optimality conditions for bilevel programs with quadratic strictly convex lower levels’, in D.-Z Dhu and P.M. Pardalos (eds.): Minimax and Applications, Kluwer Acad. Publ. 1995, 141–151.

    Google Scholar 

  41. Vicente, L.N., Savard, G., and Judice, J.: ‘Descent approaches for quadratic bilevel programming’, J. Optim. Th. Appl.81 (1994), 379–399.

    MathSciNet  MATH  Google Scholar 

  42. Visweswaran, V., Floudas, C.A., Ierapetritou, M.G., and Pistikopoulos, E.N.: ‘A decomposition-based global optimization approach for solving bilevel linear and quadratic programs’, in C.A. Floudas and P.M. Pardalos (eds.): State of the Art in Global Optimization, Kluwer Acad. Publ. 1996, 139–162.

    Google Scholar 

  43. Wen, U.-P, and Hsu, S.-T.: ‘A note on a linear bilevel programming algorithm based on bicriteria programming’, Comput. Oper. Res.16 (1989), 79–83.

    MathSciNet  MATH  Google Scholar 

  44. Wetterling, W.: ‘Definitheitsbedingungen für relative Extrema bei Optimierungs-und Aproximation saufgaben’, Numerische Math.15 (1970), 122–136.

    MathSciNet  MATH  Google Scholar 

  45. Ye, J.: ‘Necessary conditions for bilevel dynamic optimization problems’, SIAM J. Control Optim.33 (1995), 1208–1223.

    MathSciNet  MATH  Google Scholar 

  46. Ye, J.J., and Zhu, D.L.: ‘Optimality conditions for bilevel programming problems’, Optim.33 (1995), 9–27.

    MathSciNet  MATH  Google Scholar 

  47. Zlobec, S.: ‘Lagrange duality in partly convex programming’, in C.A. Floudas and P.M. Pardalos (eds.): State of the Art in Global Optimization, Kluwer Acad. Publ. 1996, pp. 1–18.

    Google Scholar 

  48. Zlobec, S.: ‘Stable parametric programming’, Optim.45 (1998), 387–416.

    MathSciNet  Google Scholar 

  49. Zlobec, S.: ‘Parametric programming: An illustrative mini-encyclopedia’, Math. Commun.5 (2000), 1–39.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this entry

Cite this entry

Zlobec, S. (2001). Bilevel Programming: Optimality Conditions and Duality . In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/0-306-48332-7_39

Download citation

  • DOI: https://doi.org/10.1007/0-306-48332-7_39

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-6932-5

  • Online ISBN: 978-0-306-48332-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics