Skip to main content

Enterococcus

  • Reference work entry
The Prokaryotes

Physiology and Genetics—General Introduction

Studies of enterococcal physiology have been conducted, for the most part, on members of two species, Enterococcus faecalis and Enterococcus faecium, with the exception of a few reports on Enterococcus hirae, which in many earlier publications was identified as E. faecalis or E. faecium. Enterococcus faecalis, recognized as a distinct species, is distinguishable from the E. faecium group, to which both E. faecium and E. hirae have been assigned on the basis of 16S rRNA sequences. Physiologically, E. faecalis can be distinguished from members of the E. faecium group in that the former can produce acid from glycerol, can ferment pyruvate, can utilize menaquinones as non-cytochrome electron carriers, and does not require exogenous folic acid for growth. Enterococcus hirae is physiologically distinguishable from E. faecium on the basis of the latter’s ability to produce acid from L-arabinose (Devriese et al., 1993).

Most enterococcal genetic...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Abrams, A., P. McNamara, and F. B. Johnson. 1960 Adenosine triphosphatase in isolated bacterial cell membranes J. Bacteriol. 235 3659–3662

    CAS  Google Scholar 

  • Acar, J. F., and A. Y. Buu-Hoi. 1988 Resistance patterns of important Gram-positive pathogens J. Antimicrob. Chemother. 21 41–47

    PubMed  CAS  Google Scholar 

  • Ahmed, S. A., and A. Claiborne. 1989 The streptococcal flavoprotein NADH oxidase. I. Evidence linking NADH oxidase and NADH peroxidase cysteinyl redox centers J. Biol. Chem. 264 19856–19863

    PubMed  CAS  Google Scholar 

  • Al-Obeid, S., L. Gutmann, and R. Williamson. 1990 Modification of penicillin-binding proteins of penicillin-resistant mutants of different species of enterococci J. Antimicrob. Chemother. 26 613–618

    PubMed  CAS  Google Scholar 

  • Alonso, J. C., S. Ayora, I. Canosa, F. Weise, and F. Rojo. 1996 Site-specific recombination in Gram-positive theta-replicating plasmids FEMS Microbiol. Lett. 142 1–10

    PubMed  CAS  Google Scholar 

  • Alpert, C.-A., R. Frank, K. Stuber. J. Deutscher, and W. Hengstenberger. 1985 Phosphoenolpyruvate-dependent protein kinase enzyme I of Streptococcus faecalis: Purification and properties of the enzyme and characterization of its active center Biochemistry 24 959–964

    PubMed  CAS  Google Scholar 

  • An, F. Y., and D. B. Clewell. 1997 The origin of transfer (oriT) of the enterococcal, pheromone-responding, cytolysin plasmid pAD1 is located within the repA determinant Plasmid 37 87–94

    PubMed  CAS  Google Scholar 

  • Arthur, M., C. Molinas, T. D. H. Bugg, G. D. Wright, C. T. Walsh, and P. Courvalin. 1992a Evidence for in vivo incorporation of D-lactate into peptidglycan precursors of vancomycin-resistant enterococci Antimicrob. Agents Chemother. 36 867–869

    PubMed  CAS  Google Scholar 

  • Arthur, M., C. Molinas, and P. Courvalin. 1992b The VanS-VarR two-component regulatory system controls synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147 J. Bacteriol. 174 2582–2591

    PubMed  CAS  Google Scholar 

  • Arthur, M., C. Molinas, F. Depardieu, and P. Courvalin. 1993 Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147 J. Bacteriol. 175 117–127

    PubMed  CAS  Google Scholar 

  • Arthur, M., F. Depardieu, H. Snaith, P. Reynolds, and P. Courvalin. 1994 Contribution of VanY D,D-carboxypeptidase to glycopeptide resistance in Enterococcus faecalis by hydrolysis of peptidoglycan precursors Antimicrob. Agents Chemother. 38 1899–1903

    PubMed  CAS  Google Scholar 

  • Arthur, M., F. Depardieu, F. Molinas, C. Reynolds, and P. Courvalin. 1995 The vanZ gene of Tn1546 from Enterococcus faecium BM4147 confers resistance to teicoplanin Gene 154 87–92

    PubMed  CAS  Google Scholar 

  • Atkinson, B. A., and V. Lorian. 1984 Antimicrobial agent susceptibility patterns of bacteria in hospitals from 1971 to 1982 J. Clin. Microbiol. 20 791–796

    PubMed  CAS  Google Scholar 

  • Atkinson, B. A., A. Abu-Al-Jaibat, and D. J. LeBlanc. 1997 Antibiotic resistance among enterococci isolated from clinical specimens between 1953 and 1954 Antimicrob. Agents Chemother. 41 1598–1600

    PubMed  CAS  Google Scholar 

  • Aue, B. J., and R. H. Deibel. 1967 Fumarate reductase activity of Streptococcus faecalis J. Bacteriol. 93 1770–1776

    PubMed  CAS  Google Scholar 

  • Azucena, E., I. Grapsas, and S. Mobashery. 1997 Properties of a bifunctional bacterial antibiotic resistance enzyme that catalyzes ATP-dependent 2″-phosphorylation and acetyl-CoA-dependent 6’-acetylation of aminoglycosides J. Am. Chem. Soc. 119 2317–2318

    CAS  Google Scholar 

  • Bakker, E. P., and F. M. Harold. 1980 Energy coupling to potassium transport in Streptococcus faecalis: interplay of ATP and the proton motive force J. Biol. Chem. 255 433–440

    PubMed  CAS  Google Scholar 

  • Banai, M., and D. J. LeBlanc. 1984 Streptococcus faecalis R plasmid pJH1 contains an erythromycin resistance transposon (Tn3871) similar to transposon Tn917 J. Bacteriol. 158 1172–1174

    PubMed  CAS  Google Scholar 

  • Banai, M., M. A. Gonda, J. M. Ranhand, and D. J. LeBlanc. 1985 Streptococcus faecalis R plasmid pJH1 contains a pAMα1Δ1-like replicon J. Bacteriol. 164 626–632

    PubMed  CAS  Google Scholar 

  • Baum, R. H., and M. I. Dolin. 1963 Isolation of a new naphothoquinone from Streptococcus faecalis 10C1 J. Biol. Chem. 238 4109–4111

    PubMed  CAS  Google Scholar 

  • Baum, R. H., and M. I. Dolin. 1965 Isolation of 2-solanesyl-1,4-naphthoquinone from Streptococcus faecalis, 10C1 J. Biol. Chem. 240 3425–3422

    PubMed  CAS  Google Scholar 

  • Belli, W. A., and R. E. Marquis. 1991 Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture Appl. Environ. Microbiol. 57 1134–1138

    PubMed  CAS  Google Scholar 

  • Bentorcha, F., G. DeCespedes, and T. Horaud. 1991 Tetracycline resistance heterogeneity in Enterococcus faecium Antimicrob. Agents Chemother. 35 808–812

    PubMed  CAS  Google Scholar 

  • Berg, T., N. Firth, S. Apisiridej, A. Hettiaratchi, A. Leelaporn, and R. A. Skurray. 1998 Complete nucleotide sequence of pSK41: Evolution of staphylococcal conjugative multiresistance plasmids J. Bacteriol. 180 4350–4359

    PubMed  CAS  Google Scholar 

  • Berti, M., G. Candiani, A. Kaufhold, A. Muscholl, and R. Wirth. 1998 Does aggregation substance of Enterococcus faecalis contribute to development of endocarditis? Infection 26 48–53

    PubMed  CAS  Google Scholar 

  • Bozdogan, B., L. Berrezouga, M.-S. Kuo, D. A. Yurek, K. A. Farley, B. J. Stockman, and R. Leclercq. 1999 A new resistance gene, linB, conferring resistance to lincosamides by nucleotidylation in Enterococcus faecium HM1025 Antimicrob. Agents Chemother. 43 925–929

    PubMed  CAS  Google Scholar 

  • Britton L., D. P. Malinowski, and I. Fridovich. 1978 Superoxide dismutase and oxygen metabolism in Streptococcus faecalis and comparisons with other organisms J. Bacteriol. 134 229–236

    PubMed  CAS  Google Scholar 

  • Brown, A. T., and C. L. Wittenberger. 1972 Induction and regulation of a nicotinamide adenine dinucleotide-specific 6-phosphogluconate dehydrogenase in Streptococcus faecalis J. Bacteriol. 109 106–115

    PubMed  CAS  Google Scholar 

  • Bruand, C., E. Le Chatelier, S. D. Ehrlich, and L. Janniere. 1993 A fourth class of theta-replicating plasmids: The pAMβ1 family from Gram-positive bacteria Proc. Natl. Acad. Sci. USA 90 11668–11672

    PubMed  CAS  Google Scholar 

  • Bruand, C., and S. D. Ehrlich. 1998 Transcription-driven DNA replication of plasmid pAMβ1 in Bacillus subtilis Molec. Microbiol. 30 135–145

    CAS  Google Scholar 

  • Bugg, T. D. H., S. Dutka-Malen, M. Arthur, P. Courvalin, and C. T. Walsh. 1991a Identification of vancomycin resistance protein VanA as a d-alanine:D-alanine ligase of altered substrate specificity Biochemistry 30 2017–2021

    PubMed  CAS  Google Scholar 

  • Bugg, T. D. H., G. D. Wright, S. Dutka-Malen, M. Arthur, P. Courvalin, and C. T. Walsh. 1991b Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: Biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA Biochemistry 30 10408–10415

    PubMed  CAS  Google Scholar 

  • Burdett, V., J. Inamine, and S. Rajagopalan. 1982 Heterogeneity of tetracycline resistance determinants in Streptococcus J. Bacteriol. 149 995–1004

    PubMed  CAS  Google Scholar 

  • Burdett, V. 1986 Streptococcal tetracycline resistance mediated at the level of protein synthesis J. Bacteriol. 165 564–569

    PubMed  CAS  Google Scholar 

  • Burdett, V. 1990 Nucleotide sequence of the tet(M) gene of Tn916 Nucleic Acids Res. 18 6137

    PubMed  CAS  Google Scholar 

  • Burdett, V. 1991 Purification and characterization of Tet(M), a protein that renders ribosomes resistant to tetracycline J. Biol. Chem. 266 2872–2877

    PubMed  CAS  Google Scholar 

  • Burdett, V. 1996 Tet(M)-promoted release of tetracycline from ribosomes is GTP dependent J. Bacteriol. 178 3246–3251

    PubMed  CAS  Google Scholar 

  • Caparon, M. G., and J. R. Scott. 1989 Excision and insertion of the conjugative transposon Tn916 involves a novel recombination mechanism Cell 59 1027–1034

    PubMed  CAS  Google Scholar 

  • Casadewall, B., and P. Courvalin. 1999 Characterization of the vanD glycopeptide resistance gene cluster from Enterococcus faecium BM4339 J. Bacteriol. 181 3644–3648

    PubMed  CAS  Google Scholar 

  • Cercenado, E., M. F. Vincente, M. D. Diaz, C. Sanchez-Carillo, and M. Sanchez-Rubiales. 1996 Characterization of clinical isolates of β-lactamase-negative, highly ampicillin-resistant Enterococcus faecalis Antimicrob. Agents Chemother. 40 2420–2422

    PubMed  CAS  Google Scholar 

  • Charpentier, E., G. Gerbaud, and P. Courvalin. 1993 Characterization of a new class of tetracycline-resistance gene tet(S) in Listeria monocytogenes BM4210 Gene 131 27–34

    PubMed  CAS  Google Scholar 

  • Charpentier, E., G. Gerbaud, and P. Courvalin. 1994 Presence of the Listeria tetracycline resistance gene tet(S) in Enterococcus faecalis Antimicrob. Agents Chemother. 38 2330–2335

    PubMed  CAS  Google Scholar 

  • Charrier, V., E. Buckley, D. Parsonage, A. Galinier, E. Darbon, M. Jaquinod, E. Forest, J. Deutshert, and A. Claiborne. 1997 Cloning and sequencing of two enterococcal glpK genes and regulation of the encoded glycerol kinases by phosphoenolpyruvate-dependent, phospotransferase system-catalyzed phosphorylation of a single histidyl residue J. Biol. Chem. 272 14166–14174

    PubMed  CAS  Google Scholar 

  • Chow, J. W., L. A. Thal, M. B. Perri, J. A. Vazquez, S. M. Donabedian, D. B. Clewell, and M. J. Zervos. 1993 Plasmid-associated hemolysin and aggregation substance production contribute to virulence in experimental enterococcal endocarditis Antimicrob. Agents Chemother. 37 2474–2477

    PubMed  CAS  Google Scholar 

  • Chow, J. W., M. J. Zervos, S. A. Lerner, L. A. Thal, S. M. Donabedian, D. D. Jaworski, S. Tsai, K. J. Shaw, and D. B. Clewell. 1997 A novel gentamicin resistance gene in Enterococcus Antimicrob. Agents Chemother. 41 511–514

    PubMed  CAS  Google Scholar 

  • Churchward, G. 2002 Conjugative transposons and related mobile elements In: N. Craig, R. Craigie, M. Gellert, and A. Lambowitz (Eds.) Mobile DNA ASM Press, Washington, DC 2 177–191

    Google Scholar 

  • Clancy, J., J. Petitpas, R. Dib-Hajj, W. Yuan, M. Cronan, A. V. Kamath, J. Bergeron, and J. A. Retsema. 1996 Molecular cloning and functional analysis of a novel macrolide-resistance determinant, mefA, from Streptococcus pyogenes Molec. Microbiol. 22 867–879

    CAS  Google Scholar 

  • Clark, N. C., O. Olskik, J. M. Swenson, C. A. Spiegel, and F. C. Tenover. 1999 Detection of a streptomycin/spectinomycin adenylyltransferase gene (aadA) in Enterococcus faecalis Antimicrob. Agents Chemother. 43 157–160

    PubMed  CAS  Google Scholar 

  • Clewell, D. B., Y. Yagi, G. M. Dunny, and S. K. Schultz. 1974 Characterization of three plasmid deoxyribonucleic acid molecules in a strain of Streptococcus faecalis: identification of a plasmid determining erythromycin resistance J. Bacteriol. 117 283–289

    PubMed  CAS  Google Scholar 

  • Clewell, D. B. 1981 Plasmids, drug resistance, and gene transfer in the genus Streptococcus Microbiol. Rev. 45 409–436

    PubMed  CAS  Google Scholar 

  • Clewell, D. B., Y. Yagi, R. Ike, R. A. Craig, B. L. Brown, and F. An. 1982 Sex pheromones in Streptococcus faecalis: multiple pheromone systems in strain DS5, similarities of pAD1 and pAMγ1, and mutants of pAD1 altered in conjugative properties In: Schlessinger, D. (Ed.) Microbiology-1982 ASM Press, Washington, DC 97–100

    Google Scholar 

  • Clewell, D. B., and K. E. Weaver. 1989 Sex pheromones and plasmid transfer in Enterococcus faecalis (a review) Plasmid 21 175–184

    PubMed  CAS  Google Scholar 

  • Clewell, D. B. 1993a Bacterial sex pheromone-induced plasmid transfer Cell 73 9–12

    PubMed  CAS  Google Scholar 

  • Clewell, D. B. 1993b Sex pheromones and the plasmid-encoded mating response in Enterococcus faecalis In: D. B. Clewell (Ed.) Bacterial Conjugation Plenum Press, New York, NY 349–369

    Google Scholar 

  • Clewell, D. B., and S. E. Flannagan. 1993c The conjugative transposons of Gram-positive bacteria In: D. B. Clewell (Ed.) Bacterial Conjugation Plenum Press, New York, NY 369–393

    Google Scholar 

  • Clewell, D. B. 1999 Sex pheromone systems in enterococci In: G. M. Dunny and S. C. Winans (Eds.) Cell-Cell Signalling in Bacteria ASM Press, Washington, DC 47–65

    Google Scholar 

  • Clewell, D. B., and G. M. Dunny. 2002 Conjugation and Genetic Exchange in Enterococci In: M. S. Gilmore, D. B. Clewell, P. Courvalin, G. M. Dunny, B. E. Murray, and L. B. Rice (Eds.) The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance ASM Press, Washington, DC 265–300

    Google Scholar 

  • Coudron, P. E., S. M. Markowitz, and E. S. Wong. 1992 Isolation of a β-lactamase-producing, aminoglycoside-resistant strain of Enterococcus faecium Antimicrob. Agents Chemother. 36 1125–1126

    PubMed  CAS  Google Scholar 

  • Courvalin, P. M., C. Carlier, and Y. A. Chabbert. 1972 Plasmid linked tetracycline and erythromycin resistance in group D Streptococcus Annales de l’Institut Pasteur 123 755–759

    PubMed  CAS  Google Scholar 

  • Courvalin, P. M., C. Carlier, O. Croissant, and D. Blangy. 1974 Identification of two plasmids determining resistance to tetracycline and to erythromycin in group D Streptococcus Molec. Gen. Genet. 132 181–192

    PubMed  CAS  Google Scholar 

  • Courvalin, P., and C. Carlier. 1986 Transposable multiple antibiotic resistance in Streptococcus pneumoniae Molec. Gen. Genet. 205 291–297

    PubMed  CAS  Google Scholar 

  • Cunin, R., N. Glansdorff, A. Pierard, and V. Stalon. 1986 Biosynthesis and metabolism of arginine in bacteria Microbiol. Rev. 50 314–352

    PubMed  CAS  Google Scholar 

  • DeBoer, M., C. P. Broekhuizen, and P. W. Postma. 1986 Regulation of glycerol kinase by enzyme IIIGlc of the phosphoenolpyruvate:carbohydrate phosphotransferase system J. Bacteriol. 167 393–395

    CAS  Google Scholar 

  • De Boever, E. H., D. B. Clewell, and C. M. Fraser. 2000 Enterococcus faecalis conjugative plasmid pAM373: complete nucleotide sequence and genetic analyses of sex pheromone response Molec. Microbiol. 37 1327–1341

    Google Scholar 

  • Deibel, R. H. 1964a The group D streptococci Bacteriol. Rev. 28 330–366

    PubMed  CAS  Google Scholar 

  • Deibel, R. H., and M. J. Kvetkas. 1964b Fumarate reduction and its role in the diversion of glucose fermentation by Streptococcus faecalis J. Bacteriol. 88 858–864

    PubMed  CAS  Google Scholar 

  • Deibel, R. H., and C. F. Niven Jr. 1964c Pyuruvate fermentation in Streptococcus faecalis J. Bacteriol. 88 4–10

    PubMed  CAS  Google Scholar 

  • Deutscher, J., and H. Sauerwald. 1986a Stimulation of dihydroxyacetone and glycerol kinase activity in Streptococcus faecalis by phosphoenolpyruvate-dependent phosphorylation catalyzed by enzyme I and HPr of the phosphotransferase system J. Bacteriol. 166 829–836

    PubMed  CAS  Google Scholar 

  • Deutscher, J., B. Pevec, K. Beyreuther, H.-H. Kiltz, and W. Hengstenberg. 1986b Steptococcal phosphoenolpyruvate phosphotransferase system: amino acid sequence and site of ATP-dependent phosphorylation of HPr Biochemistry 25 6543–6551

    PubMed  CAS  Google Scholar 

  • Deutscher, J. H., B. Bauer, and H. Sauerwald. 1993 Regulation of glycerol metabolism in Enterococcus faecalis by phosphoenolpyruvate-dependent phosphorylation of glycerol kinase catalyzed by enzyme I and HPr of the phosphotransferase system J. Bacteriol. 175 3730–3733

    PubMed  CAS  Google Scholar 

  • Devriese, L. A., B. Pot, and M. D. Collins. 1993 Phenotypic identification of the genus Enterococcus and differentiation of phylogenetically distinct enterococcal species and species groups J. Appl. Bacteriol. 75 399–408

    PubMed  CAS  Google Scholar 

  • Driessen, A. J. M., E. J. Smid, and W. N. Konings. 1988 Transport of diamines by Enterococcus faecalis is mediated by an agmatine-putrescine antiporter J. Bacteriol. 170 4522–4527

    PubMed  CAS  Google Scholar 

  • Dunny, G. M., B. L. Brown, and D. B. Clewell. 1978 Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone Proc. Natl. Acad. Sci. USA 75 3479–3483

    PubMed  CAS  Google Scholar 

  • Dunny, G. M., C. Funk, and J. Adsit. 1981 Direct stimulation of the transfer of antibiotic resistance by sex pheromones in Streptococcus faecalis Plasmid 6 270–278

    PubMed  CAS  Google Scholar 

  • Dunny, G. M. 1990 Genetic functions and cell-cell interactions in the pheromone-inducible plasmid transfer system of Enterococcus faecalis Molec. Microbiol. 4 689–696

    CAS  Google Scholar 

  • Dunny, G. M. 1991a Mating interactions in Gram-positive bacteria In: M. Dworkin (Ed.) Microbial Cell-Cell Interactions ASM Press, Washington, DC 9–33

    Google Scholar 

  • Dunny, G. M., P. P. Cleary, and L. L. McKay (Eds.). 1991b Genetics and Molecular Biology of Streptococci, Lactococci, and Enterococci ASM Press, Washington, DC

    Google Scholar 

  • Dunny, G. M., B. A. B. Leonard, and P. J. Hedberg. 1995 Pheromone-inducible conjugation in Enterococcus faecalis: interbacterial and host-parasite chemical communication J. Bacteriol. 177 871–876

    PubMed  CAS  Google Scholar 

  • Dunny, G. M., and B. A. B. Leonard. 1997 Cell-cell communication in Gram-positive bacteria Ann. Rev. Microbiol. 51 527–564

    CAS  Google Scholar 

  • El Amin, N., S. Jalai, and B. Wretlind. 1999 Alterations in GyrA and ParC associated with fluoroquinolone resistance in Enterococcus faecium Antimicrob. Agents Chemother. 43 947–949

    PubMed  Google Scholar 

  • Eliopoulos, G. M., B. F. Farber, B. E. Murray, C. Wennersten, and R. C. Moellering Jr. 1984 Ribosomal resistance of clinical enterococcal isolates to streptomycin Antimicrob. Agents Chemother. 25 398–399

    PubMed  CAS  Google Scholar 

  • Esders, T. W., and C. A. Michrina. 1979 Purification and properties of L-alpha-glycerolphosphate oxidase from Streptococcus faecium J. Biol. Chem. 254 2710–2715

    PubMed  CAS  Google Scholar 

  • Evans, R. P., R. B. Winter, and F. L. Macrina. 1985 Molecular cloning of a pIP501 derivative yields a model replicon for the study of streptococcal conjugation J. Gen. Microbiol. 131 145–153

    PubMed  CAS  Google Scholar 

  • Evers, S., and P. Courvalin. 1996 Regulation of VanB-type vancomycin resistance gene expression by the VanSB-VanRB two-component regulatory system in Enterococcus faecalis V583 J. Bacteriol. 178 1302–1309

    PubMed  CAS  Google Scholar 

  • Evers, S., R. Quintiliani Jr., and P. Courvalin. 1996 Genetics of glycopeptide resistance in enterococci Microb. Drug Resist. 2 219–223

    PubMed  CAS  Google Scholar 

  • Falcioni, G. C., S. Coderoni, G. G. Tedeschi, M. Brunori, and G. Rotilio. 1981 Red cell lysis induced by microorganisms as a case of superoxide-and hydrogen peroxide-dependent hemolysis mediated by oxyhemoglobin Biochim. Biophys. Acta 678 437–441

    PubMed  CAS  Google Scholar 

  • Ferretti, J. J., K. S. Gilmore, and P. Courvalin. 1986 Nucleotide sequence analysis of the gene specifying the bifunctional 6′-aminoglycoside acetyltransferase 2″-aminoglycoside phosphotransferase enzyme in Streptococcus faecalis and identification and cloning of gene regions specifying the two activities J. Bacteriol. 167 631–638

    PubMed  CAS  Google Scholar 

  • Ferretti, J. J., and R. Curtiss 3rd (Eds.). 1987 Streptococcal Genetics ASM Press, Washington, DC

    Google Scholar 

  • Ferretti, J. J., M. S. Gilmore, T. R. Klaenhammer, and F. Brown (Eds.). 1995 Genetics of Streptococci, Enterococci and Lactococci Karger, New York, NY

    Google Scholar 

  • Fines, M., B. Perichonb, P. Reynolds, D. F. Sahm, and P. Courvalin. 1999 VanE, a new type of acquired glycopeptide resistance in Enterococcus faecalis BM4405 Antimicrob. Agents Chemother. 43 2161–2164

    PubMed  CAS  Google Scholar 

  • Fischer, R., R. P. von Strandmann, and W. Hengstenberg. 1991 Mannitol-specific phosphoenolpyruvate-dependent phosphotransferase system of Enterococcus faecalis: Molecular cloning and nucleotide sequences of the enzyme IIImtl gene and the mannitol-1-phosphate dehydrogenase gene, expression in Escherichia coli, and comparison of the gene products with similar enzymes J. Bacteriol. 173 3709–3715

    PubMed  CAS  Google Scholar 

  • Flannagan, S. E., L. A. Zitzow, Y. A. Su, and D. B. Clewell. 1994 Nucleotide sequence of the 18-kb conjugative transposon Tn916 from Enterococcus faecalis Plasmid 32 350–354

    PubMed  CAS  Google Scholar 

  • Fontana, R., R. Cerini, P. Longoni, A. Grossato, and P. Canepari. 1983 Identification of a streptococcal penicillin-binding protein that reacts very slowly with penicillin J. Bacteriol. 155 1343–1350

    PubMed  CAS  Google Scholar 

  • Fontana, R., M. Ligozzi, F. Pittaluga, and G. Satta. 1996 Intrinsic penicillin resistance in enterococci Microb. Drug Resist. 2 209–213

    PubMed  CAS  Google Scholar 

  • Francia, M. V., W. Haas, R. Wirth, E. Samberger, A. Muscholl-Silberhorn, M. S. Gilmore, Y. Ike, K. E. Weaver, F. Y. An, and D. B. Clewell. 2001 Completion of the nucleotide sequence of the Enterococcus faecalis conjugative virulence plasmid pAD1 and identification of a second transfer origin Plasmid 46 117–127

    PubMed  CAS  Google Scholar 

  • Franke, A. E., and D. B. Clewell. 1981 Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of “conjugal” transfer in the absence of a conjugative plasmid J. Bacteriol. 145 494–502

    PubMed  CAS  Google Scholar 

  • Frankenberg, L., M. Grugna, and L. Hederstedt. 2002 Enterococcus faecalis heme-dependent catalase J. Bacteriol. 184 6351–6356

    PubMed  CAS  Google Scholar 

  • Fujimoto, S., H. Tomita, E. Wakamatsu, K. Tanimoto., and Y. Ike. 1995 Physical mapping of the conjugative bacteriocin plasmid pPD1 of Enterococcus faecalis and identification of the determinant related to the pheromone response J. Bacteriol. 177 5574–5581

    PubMed  CAS  Google Scholar 

  • Galli, D., F. Lottspeich, and R. Wirth. 1990 Sequence analysis of Enterococcus faecalis aggregation substance encoded by the sex pheromone plasmid pAD1 Molec. Microbiol. 4 895–904

    CAS  Google Scholar 

  • Gallin, J. I., and P. J. VanDemark. 1964 Evidence for oxidative phosphorylation in Streptococcus faecalis Biochem. Biophys. Res. Commun. 17 630–635

    CAS  Google Scholar 

  • Gerdes, K., J. Moller-Jensen, and R. B. Jensen. 2000 Plasmid and chromosome partitioning: surprises from phylogeny Molec. Microbiol. 37 455–466

    CAS  Google Scholar 

  • Gering, M., F. Gotz, and R. Bruckner. 1996 Sequence and analysis of the replication region of the Staphylococcus xylosus plasmid pSX267 Gene 182 117–122

    PubMed  CAS  Google Scholar 

  • Gibbs, M., J. T. Sokatch, and I. C. Gunsalus. 1955 Product labeling of glucose-1-14C fermentation of homofermentative and heterofermentative lactic acid bacteria J. Bacteriol. 70 572–576

    PubMed  CAS  Google Scholar 

  • Gilmore, M. S., D. B. Clewell, P. Courvalin, G. M. Dunny, B. E. Murray, and L. B. Rice (Eds.). 2002 The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance ASM Press, Washington, DC

    Google Scholar 

  • Gilmore, M. S., P. S. Coburn, S. R. Nallapareddy, and B. E. Murray. 2002 Enterococcal Virulence In: M. S. Gilmore, D. B. Clewell, P. Courvalin, G. M. Dunny, B. E. Murray, and L. B. Rice (Eds.) The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance ASM Press, Washington, DC 301–354

    Google Scholar 

  • Gordon, S., J. M. Swenson, B. C. Hill, N. E. Pigott, R. R. Facklam, R. C. Cooksey, C. Thornsberry, Enterococcal Study Group, W. R. Jarvis, and F. C. Tenover. 1992 Antimicrobial susceptibility patterns of common and unusual species of enterococci causing infections in the United States J. Clin. Microbiol. 30 2373–2378

    PubMed  CAS  Google Scholar 

  • Graham, A. F., and B. M. Lund. 1983 The effect of alkaline pH on growth and metabolic products of a motile, yellow-pigmented Streptococcus sp J. Gen. Microbiol. 129 2429–2435

    CAS  Google Scholar 

  • Gruss, A., and S. D. Ehrlich. 1989 The family of highly interrelated single-stranded deoxyribonucleic acid plasmids Microbiol. Rev. 53 231–241

    PubMed  CAS  Google Scholar 

  • Gunsalus, I. C., and C. F. Niven. 1942 The effect of pH on the lactic acid fermentation J. Biol. Chem. 145 131–136

    CAS  Google Scholar 

  • Gunsalus, I. C., and J. M. Sherman. 1943 The fermentation of glycerol by streptococci J. Bacteriol. 45 155–161

    PubMed  CAS  Google Scholar 

  • Gunsalus, I. C. 1947 Products of anaerobic glycerol fermentation by Streptococcus faecalis J. Bacteriol. 54 239–244

    CAS  Google Scholar 

  • Gunsalus, I. C., and C. W. Shuster. 1961 Energy-yielding metabolism in bacteria In: I. C. Gunsalus and R. Y. Stanier (Eds.) The Bacteria Academic Press, New York, NY 1–58

    Google Scholar 

  • Gutmann, L., D. Billot-Klein, and S. Al-Obeid. 1992 Inducible carboxypeptidase activity in vancomycin-resistant enterococci Antimicrob. Agents Chemother. 36 77–80

    PubMed  CAS  Google Scholar 

  • Haas, W., and M. S. Gilmore. 1999 Molecular nature of a novel bacterial toxin: The cytolysin of Enterococcus faecalis Med. Microbiol. Immunol. 187 183–190

    PubMed  CAS  Google Scholar 

  • Haas, W., B. D. Shepard, and M. S. Gilmore. 2002 Two-component regulator of Enterococcus faecalis cytolysin responds to quorum-sensing autoinduction Nature 415 84–87

    PubMed  CAS  Google Scholar 

  • Hamilton-Miller, J. M. T. 1988 Reversal of activity of trimethoprim against Gram-positive cocci by thymidine, thymine, and “folates” J. Antimicrob. Chemother. 22 35–39

    PubMed  CAS  Google Scholar 

  • Handwerger, S., M. J. Pucci, and A. Kolokathis. 1990 Vancomycin resistance is encoded on a pheromone response plasmid in Enterococcus faecium 228 Antimicrob. Agents Chemother. 34 358–360

    PubMed  CAS  Google Scholar 

  • Handwerger, S., J. Skoble, L. F. Discotto, and M. J. Pucci. 1995 Heterogeneity of the vanA gene cluster in clinical isolates of enterococci from the Northeastern United States Antimicrob. Agents Chemother. 39 362–368

    PubMed  CAS  Google Scholar 

  • Hedberg, P. J., B. A. B. Leonard, R. E. Ruhfel, and G. M. Dunny. 1996 Identification and characterization of the genes of Enterococcus faecalis plasmid pCF10 involved in replication and in negative control of pheromone-inducible conjugation Plasmid 35 46–57

    PubMed  CAS  Google Scholar 

  • Heefner, D. L., and F. M. Harold. 1982 ATP-driven sodium pump in Streptococcus faecalis Proc. Natl. Acad. Sci., USA 79 2798–2802

    PubMed  CAS  Google Scholar 

  • Hengstenberg, W., D. Kohlbrecher, E. Witt, R. Kruse, I. N. Christiansen, D. Peters, R. P. von Strandmann, P. Stadtler, B. Koch, and H.-R. Kalbitzer. 1993 Structure and function of proteins of the phosphotransferase system of 6-phospho-β-glycosidases in Gram-positive bacteria FEMS Microbiol. Lett. 12 149–164

    CAS  Google Scholar 

  • Hirt, H., R. Wirth, and A. Muscholl. 1996 Comparative analysis of 18 sex pheromone plasmids from Enterococcus faecalis: Detection of a new insertion element on pPD1 and implications for the evolution of this plasmid family Molec. Gen. Genet. 252 640–647

    PubMed  CAS  Google Scholar 

  • Hockings, P., and P. J. Rogers. 1997 Thermodynamic significance of the lactate gradient Eur. J. Biochem. 246 574–579

    PubMed  CAS  Google Scholar 

  • Hodel-Christian, S. L., and B. E. Murray. 1991 Characterization of the gentamicin resistance transposon Tn5281 from Enterococcus faecalis and comparison to staphylococcal transposons Tn4001 and Tn4031 Antimicrob. Agents Chemother. 35 1147–1152

    PubMed  CAS  Google Scholar 

  • Hodel-Christian, S. L., and B. E. Murray. 1992 Comparison of the gentamicin resistance transposon Tn5281 with regions encoding gentamicin resistance in Enterococcus faecalis isolates from diverse geographic locations Antimicrob. Agents Chemother. 36 2259–2264

    PubMed  CAS  Google Scholar 

  • Horaud, T., C. Le Bouguenec, and K. Pepper. 1985 Molecular genetics of resistance to macrolides, lincosamides and streptogramin B (MLS) in streptococci J. Antimicrob. Chemother. 16, Suppl. A 111–135

    PubMed  Google Scholar 

  • Horodniceanu, T., T. Bougueleret, N. El-Solh, G. Bieth, and F. Delbos. 1979 High-level, plasmid-borne resistance to gentamicin in Streptococcus faecalis subsp. Zymogenes Antimicrob. Agents Chemother. 16 686–689

    PubMed  CAS  Google Scholar 

  • Hoskins, D. D., H. R. Whiteley, and B. Mackler. 1962 The reduced diphosphopyridine nucleotide oxidase of Streptococcus faecalis: Purification and properties J. Biol. Chem. 237 2647–2651

    PubMed  CAS  Google Scholar 

  • Huycke, M. M., W. Joyce, and M. F. Wack. 1996 Augmented production of extracellular superoxide production by blood isolates of Enterococcus faecalis J. Infect. Dis. 173 743–746

    PubMed  CAS  Google Scholar 

  • Huycke, M. M., D. Moore, W. Joyce, P. Wise, L. Shepard, Y. Kotake, and M. S. Gilmore. 2001 Extracellular superoxide production by Enterococcus faecalis requires demethylmenaquinone and is attenuated by functional terminal quinol oxidases Molec. Microbiol. 42 729–740

    CAS  Google Scholar 

  • Huycke, M. M. 2002 Physiology of Enterococci In: M. S. Gilmore, D. B. Clewell, P. Courvalin, G. M. Dunny, B. E. Murray, and L. B. Rice (Eds.) The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance ASM Press, Washington, DC 133–175

    Google Scholar 

  • Ike, Y., and D. B. Clewell. 1984 Genetic analysis of the pAD1 pheromone response in Streptococcus faecalis, using transposon Tn917 as an insertional mutagen J. Bacteriol. 158 777–783

    PubMed  CAS  Google Scholar 

  • Izard, T., A. Aevarsson, M. D. Allen, A. H. Westphal, R. N. Pernam, A. de Kok, and W. G. Hol. 1999 Principles of quasi-equivalence and Euclidean geometry govern the assembly of cubic and dodecahedral cores of pyruvate dehydrogenase complexes Proc. Natl. Acad. Sci. USA 96 1240–1245

    PubMed  CAS  Google Scholar 

  • Jacob, A. E., and S. J. Hobbs. 1974 Conjugal transfer of plasmid-borne multiple antibiotic resistance in Streptococcus faecalis var. zymogenes J. Bacteriol. 117 360–372

    PubMed  CAS  Google Scholar 

  • Jacob, A. E., G. I. Douglas, and S. J. Hobbs. 1975 Self-transferable plasmids determining the hemolysin and bacteriocin of Streptococcus faecalis var. zymogenes J. Bacteriol. 121 863–872

    PubMed  CAS  Google Scholar 

  • Jacobs, N. J., and P. J. VanDemark. 1960 Comparison of the mechanism of glycerol oxidation in aerobically and anaerobically grown Streptococcus faecalis J. Bacteriol. 79 532–538

    PubMed  CAS  Google Scholar 

  • Janniere, L., A. Gruss, and S. D. Ehrlich. 1993 Plasmids In: A. L. Sonenshein, J. A. Hoch, and R. Losick (Eds.) Bacillus subtilis and Other Gram-positive Bacteria ASM Press, Washington, DC 625–644

    Google Scholar 

  • Jaworski, D. D., S. E. Flannagan, and D. B. Clewell. 1996 Analyses of traA, int-Tn, and xis-Tn mutations in the conjugative transposon Tn916 in Enterococcus faecalis Plasmid 36 201–208

    PubMed  CAS  Google Scholar 

  • Jensen, L. B., N. Frimodt-Moller, and F. M. Aarestrup. 1999 Presence of erm gene classes in Gram-positive bacteria of animal and human origin in Denmark FEMS Microbiol. Lett. 170 151–158

    PubMed  CAS  Google Scholar 

  • Jia, Z., M. Vandoselaar, J. W. Quail, and L. T. Delbaere. 1993 Active-centre torsion-angle strain revealed at 1.6 A-resolution structure of histidine-containing phosphocarrier protein Nature 361 94–97

    PubMed  CAS  Google Scholar 

  • Jones Jr., W. F., and M. Finland. 1957 Susceptibility of enterococcus to eleven antibiotics in vitro Am. J. Clin. Pathol. 27 467–481

    PubMed  Google Scholar 

  • Jones, R. N., M. L. Meach, M. A. Pfaller, and G. V. Doern. 1998 Antimicrobial activity of gatifloxacin tested against 1676 strains of ciprofloxacin-resistant Gram-positive cocci isolated from patient infections in North and South America Diagn. Microbiol. Infect. Dis. 32 247–252

    PubMed  CAS  Google Scholar 

  • Jones, R. N., R. S. Hare, F. J. Sabatelli, and the Ziracin Susceptibility Testing Group. 2001 In vitro Gram-positive antimicrobial activity of evernimicin (SCH 27899), a novel oligosaccharide, compared with other antimicrobials: a multicentre international trial J. Antimicrob. Chemother. 47 15–25

    PubMed  CAS  Google Scholar 

  • Khan, S. A. 1997 Rolling-circle replication of bacterial plasmids Microbiol. Molec. Biol. Rev. 61 442–455

    CAS  Google Scholar 

  • Kak, V., and J. W. Chow. 2002 Acquired antibiotic resistances in enterococci In: M. S. Gilmore, D. B. Clewell, P. Courvalin, G. M. Dunny, B. E. Murray, and L. B. Rice (Eds.) The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance ASM Press, Washington, DC 355–383

    Google Scholar 

  • Kakinuma, Y. 1987 Sodium/proton antiporter in Streptococcus faecalis J. Bacteriol. 169 3886–3890

    PubMed  CAS  Google Scholar 

  • Kakinuma, Y. 1998 Inorganic cation transport and energy transduction in Enterococcus hirae and other streptococci Microbiol. Molec. Biol. Rev. 62 1021–1045

    CAS  Google Scholar 

  • Kakinuma, Y., and K. Igarashi. 1999a Isolation and properties of Enterococcus hirae mutant defective in the potassium/proton antoport system J. Bacteriol. 181 4103–4105

    PubMed  CAS  Google Scholar 

  • Kakinuma, Y., I. Yamamoto, and T. Murata. 1999b Structure and function of vacuolar Na+-translocating ATPase in Enterococcus hirae J. Bioenerget. Biomembr. 31 7–14

    CAS  Google Scholar 

  • Kanematsu, E., T. Deguchi, M. Yasuda, T. Kawamura, Y. Nishino, and Y. Kawada. 1998 Alterations in the GyrA subunit of DNA gyrase and the ParC subunit of DNA topoisomerase IV associated with quinolone resistance in enterococcus faecalis Antimicrob. Agents Chemother. 42 433–435

    PubMed  CAS  Google Scholar 

  • Kao, S.-M., S. B. Olmsted, A. S. Viksnin, J. C. Gallo, and G. M. Dunny. 1991 Molecular and genetic analysis of a region of plasmid pCF10 containing positive control genes and structural genes encoding surface proteins involved in pheromone-inducible conjugation in Enterococcus faecalis J. Bacteriol. 173 7650–7664

    PubMed  CAS  Google Scholar 

  • Kao, S. J., I. You, D. B. Clewell, S. M. Donabedian, M. J. Zervos, J. Petrin, K. J. Shaw, and J. W. Chow. 2000 Detection of the high-level aminoglycoside resistance gene aph(2″)-1b in Enterococcus faecium Antimicrob. Agents Chemother. 44 2876–2879

    PubMed  CAS  Google Scholar 

  • Karchmer, A. W., R. C. Moellering, Jr., and B. K. Watson. 1975 Susceptibility of various serogroups of streptococci to clindamycin and lincomycin Antimicrob. Agents Chemother. 7 164–167

    PubMed  CAS  Google Scholar 

  • Kawano, M., R. Abuki, K. Igarashi, and Y. Kakinuma. 2001 Potassium uptake with low affinity and high rate in Enterococcus hirae at alkaline pH Arch. Microbiol. 175 41–45

    PubMed  CAS  Google Scholar 

  • Kearney, K., G. F. Fitzgerald, and J. F. M. L. Seegers. 2000 Identification and characterization of an active plasmid partition mechanism for the novel Lactococcus lactis plasmid pCI2000 J. Bacteriol. 182 30–37

    PubMed  CAS  Google Scholar 

  • Kobayashi, H., J. Van Brunt, and F. M. Harold. 1978 ATP-linked calcium transport in cells and membrane vesicles of Streptococcus faecalis J. Biol. Chem. 253 2085–2092

    PubMed  CAS  Google Scholar 

  • Kobayashi, H. 1982 Second system for potassium transport in Streptococcus faecalis J. Bacteriol. 150 506–511

    PubMed  CAS  Google Scholar 

  • Krah 3rd, E. R., and F. L. Macrina. 1989 Genetic analysis of the conjugal transfer determinants encoded by the streptococcal broad-host-range plasmid pIP501 J. Bacteriol. 171 6005–6012

    PubMed  CAS  Google Scholar 

  • Kravanja, M., R. Engelmann, V. Dossonnet, M. Bluggel, H. E. Bluggel, H. E. Meyer, R. Frank, A. Galinier, J. Deutscher, N. Schnell, and W. Hengstenberg. 1999 The hpk gene of Enterococcus faecalis encodes a novel bifunctional enzyme: the HPr kinase/phosphatase Molec. Microbiol. 31 59–66

    CAS  Google Scholar 

  • Kreft, B., R. Marre, U. Schramm, and R. Wirth. 1992 Aggregation substance of Enterococcus faecalis mediates adhesion to cultured renal tubular cells Infect. Immun. 60 25–30

    PubMed  CAS  Google Scholar 

  • Krogstad, D. J., T. R. Korfhagen, R. C. Mollering, Jr., C. Wennersten, and M. N. Swartz. 1978 Aminoglycoside-inactivating enzymes in clinical isolates of Streptococcus faecalis: an explanation for resistance to antibiotic synergism J. Clin. Invest. 62 480–486

    PubMed  CAS  Google Scholar 

  • LeBlanc, D. J., and F. P. Hassell. 1976 Transformation of Streptococcus sanguis strain Challis by plasmid DNA from Streptococcus faecalis J. Bacteriol. 128 347–355

    PubMed  CAS  Google Scholar 

  • LeBlanc, D. J., L. Cohen, and L. Hansen. 1978a Transformation of a group F Streptococcus by plasmid DNA J. Gen. Microbiol. 106 49–54

    PubMed  CAS  Google Scholar 

  • LeBlanc, D. J., R. J. Hawley, L. N. Lee, and E. J. St. Martin. 1978b “Conjugal” transfer of plasmid DNA among oral streptococci Proc. Natl. Acad. Sci. USA 75 3484–3487

    Google Scholar 

  • LeBlanc, D. J., and L. N. Lee. 1982 Characterization of two tetracycline resistance determinants in Streptococcus faecalis strain JH1 J. Bacteriol. 150 835–843

    PubMed  CAS  Google Scholar 

  • LeBlanc, D. J., and L. N. Lee. 1984 Physical and genetic analyses of streptococcal plasmid pAMβ1 and cloning of its replication region J. Bacteriol. 157 445–453

    PubMed  CAS  Google Scholar 

  • LeBlanc, D. J., J. M. Inamine, and L. N. Lee. 1986 Broad geographical distribution of homologous erythromycin, kanamycin, and streptomycin resistance determinants among group D streptococci of human and animal origin Antimicrob. Agents Chemother. 29 549–555

    PubMed  CAS  Google Scholar 

  • LeBlanc, D. J., L. N. Lee, M. Banai, L. D. Rollins, and J. M. Inamine. 1987 Dissemination of streptococcal antibiotic resistance determinants in the natural environment In: J. J. Ferretti and R. Curtiss 3rd (Eds.) Streptococcal Genetics ASM Press, Washington, DC 43–53

    Google Scholar 

  • LeBlanc, D. J., L. N. Lee, and J. M. Inamine. 1991 Cloning and nucleotide base sequence analysis of a spectinomycin adenyltransferase AAD(9) determinant from Enterococcus faecalis Antimicrob. Agents Chemother. 35 1804–1810

    PubMed  CAS  Google Scholar 

  • Leboeuf, C., Y. Auffray, and A. Hartke. 2000 Cloning, sequencing and characterization of the ccpA gene from Enterococcus faecalis Int. J. Food Microbiol. 55 109–113

    PubMed  CAS  Google Scholar 

  • Le Chatelier, E., S. D. Ehrlich, and L. Janniere. 1996 Countertranscript-driven attenuation system of the pAMβ1 repE gene Mol. Microbiol. 20 1099–1112

    PubMed  Google Scholar 

  • Le Chatelier, E., L. Janniere, S. D. Ehrlich, and D. Canceill. 2001 The RepE initiator is a double-stranded and single-stranded DNA-binding protein that forms an atypical open complex at the onset of replication of plasmid pAMβ 1 from Gram-positive bacteria J. Biol. Chem. 276 10234–10246

    PubMed  Google Scholar 

  • Leclercq, R., E. Derlot, J. Duval, and P. Courvalin. 1988 Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium N. Engl. J. Med. 319 157–161

    PubMed  CAS  Google Scholar 

  • Lett, M. C. 1988 Tn3-like elements: molecular structure, evolution Biochimie 70 167–176

    PubMed  CAS  Google Scholar 

  • Liassine, N., R. Frei, I. Jan, and R. Auckenthaller. 1998 Characterization of glycopeptide-resistant enterococci from a Swiss hospital J. Clin. Microbiol. 36 1853–1858

    PubMed  CAS  Google Scholar 

  • Ligozzi, M., F. Pittaluga, and R. Fontana. 1993 Identification of a genetic element (psr) which negatively controls expression of Enterococcus hirae penicillin-binding protein 5 J. Bacteriol. 175 2046–2051

    PubMed  CAS  Google Scholar 

  • Lindmark, D. G., P. Paolella, and N. W. Wood. 1969 The pyruvate formate-lyase system of Streptococcus faecalis. I: Purification and properties of the formate-pyruvate exchange system J. Biol. Chem. 244 3605–3612

    PubMed  CAS  Google Scholar 

  • Lisiecki, P., P. Wysocki, and J. Mikucki. 2000 Occurrence of siderophores in enterococci Zentralbl. Bacteriol. 289 807–815

    CAS  Google Scholar 

  • Liu, W. Z., R. Faber, M. Feese, S. J. Remington, and D. W. Pettigrew. 1994 Escherichia coli glycerol kinase: role of a tetramer interface in regulation by fructose 1,6-bisphosphate and phosphotransferase system regulatory protein IIIGlc Biochemistry. 23 10120–10126

    Google Scholar 

  • London, J. 1968 Regulation and function of lactate oxidation in Streptococcus faecium J. Bacteriol. 95 1380–1387

    PubMed  CAS  Google Scholar 

  • London, J., and E. Y. Meyer. 1969a Malate utilization by a group D Streptococcus: physiological properties and purification of an inducible malic enzyme J. Bacteriol. 98 705–711

    PubMed  CAS  Google Scholar 

  • London, J., and E. Y. Meyer. 1969b Malate utilization by a group D Streptococcus. II: Evidence for allosteric inhibition of an inducible malate dehydrogenase (decarboxylating) by ATP and glycolytic intermediate products Biochim. Biophys. Acta 178 205–212

    PubMed  CAS  Google Scholar 

  • London, J., and E. Y. Meyer. 1970 Malate utilization by a group D Streptococcus: Regulation of malic enzyme synthesis by an inducible malate permease J. Bacteriol. 102 130–137

    PubMed  CAS  Google Scholar 

  • Lu, F., and G. Churchward. 1994 Conjugative transposition: Tn916 integrase contains two independent DNA binding domains that recognize different DNA sequences EMBO J. 13 1541–1548

    PubMed  CAS  Google Scholar 

  • Lu, F., and G. Churchward. 1995 Tn916 target DNA sequences bind the C-terminal domain of integrase protein with different affinities that correlate with transposon insertion frequency J. Bacteriol. 177 1938–1946

    PubMed  CAS  Google Scholar 

  • Luna, V. A., P. Coates, E. A. Eady, J. H. Cove, T. T. H. Nguen, and M. C. Roberts. 1999 A variety of Gram-positive bacteria carry mobile mef genes J. Antimicrob. Chemother. 44 19–25

    PubMed  CAS  Google Scholar 

  • Lyras, D., and J. I. Rood. 1997 Transposable genetic elements and antibiotic resistance determinants from Clostridium perfringens and Clostridium difficile In: J. I. Rood, B. A. McClane, J. G. Songer, and R. W. Titball (Eds.) The Clostridia: Molecular Biology and Pathogenesis Academic Press, London, UK 73–92

    Google Scholar 

  • Mainardi, J. L., R. Legrand, M. Arthur, B. Schoot, J. van Heijenoort, and L. Gutmann. 2000 Novel mechanism of β-lactam resistance due to bypass of DD-transpeptidation in Enterococcus faecium J. Biol. Chem. 275 16490–16496

    PubMed  CAS  Google Scholar 

  • Malathum, K., and B. E. Murray. 1999 Vancomycin-resistant enterococci: recent advances in genetics, epidemiology and therapeutic options Drug Res. Updates 2 224–243

    CAS  Google Scholar 

  • Manganelli, R. S. Ricci, and G. Pozzi. 1996 Conjugative transposon Tn916: evidence for excision with formation of 5’-protruding termini J. Bacteriol. 178 5813–5816

    PubMed  CAS  Google Scholar 

  • Maqueda, M., R. Quirantes, I. Martin, A. Galvez, M. Martinez-Bueno, and E. Valdivia. 1997 Chemical signals in Gram-positive bacteria: L the sex pheromone system in Enterococcus faecalis Microbiol. Semin. 13 23–36

    CAS  Google Scholar 

  • Marra, D., and J. R. Scott. 1999 Regulation of excision of the conjugative transposon Tn916 Molec. Microbiol. 31 609–621

    CAS  Google Scholar 

  • Marshall, S. H., C. J. Donskey, R. Hutton-Thomas, R. A. Salata, and L. B. Rice. 2002 Gene dosage and linezolid resistance in Enterococcus faecium and Enterococcus faecalis Antimicrob. Agents Chemother. 46 3334–3336

    PubMed  CAS  Google Scholar 

  • McMurry, L. M., B. H. Park, V. Burdett, and S. B. Levy. 1987 Energy-dependent efflux mediated by clas L (tetL) tetracycline resistance determinant from streptococci Antimicrob. Agents Chemother. 31 1648–1650

    PubMed  CAS  Google Scholar 

  • McMurry, L. M., and S. B. Levy. 2000 Tetracycline resistance in Gram-positive bacteria In: V. A. Fischetti, R. P. Novick, J. J. Ferretti, D. A. Portnoy, and J. I. Rood (Eds.) Gram-positive Pathogens ASM Press, Washington, DC 660–677

    Google Scholar 

  • Mederski-Samoraj, B. D., and B. E. Murray. 1983 High-level resistance to gentamicin in clinical isolates of enterococci J. Infect. Dis. 147 751–757

    PubMed  CAS  Google Scholar 

  • Moellering Jr., R. C., and A. N. Weinberg. 1971 Studies on antibiotic synergism against enterococci. II: Effect of various antibiotics on the uptake of 14C-labeled streptomycin by enterococci J. Clin. Invest. 50 2580–2584

    PubMed  CAS  Google Scholar 

  • Murata, T., I. Yamato, K. Igarashi, and Y. Kakinuma. 1996 Intracellular Na+ regulates transcription of the ntp operon encoding a vacuolar-type Na+-translocating ATPase in Enterococcus hirae J. Biol. Chem. 271 23661–23666

    PubMed  CAS  Google Scholar 

  • Murata, T., K. Takase, I. Yamato, K. Igarashi, and Y. Kakinuma. 1997 Purification and reconstitution of Na+-translocating vacuolar ATPase from Enterococcus hirae J. Biol. Chem. 272 24885–24890

    PubMed  CAS  Google Scholar 

  • Murray, B. E., and B. Mederski-Samoraj. 1983a Transferable β-lactamase: a new mechanism for in vitro penicillin resistance in Streptococcus faecalis J. Clin. Invest. 72 1168–1171

    PubMed  CAS  Google Scholar 

  • Murray, B. E., J. Tsao, and J. Panida. 1983b Enterococci from Bangkok, Thailand, with high-level resistance to currently available aminoglycosides Antimicrob. Agents Chemother. 23 799–802

    PubMed  CAS  Google Scholar 

  • Murray, B. E., F. Y. An, and D. B. Clewell. 1988 Plasmids and pheromone response of the β-lactamase producer Streptococcus (Enterococcus) faecalis HH22 Antimicrob. Agents Chemother. 32 547–551

    PubMed  CAS  Google Scholar 

  • Murray, B. E. 1990 The life and times of the Enterococcus Clin. Microbiol. Rev. 3 46–65

    PubMed  CAS  Google Scholar 

  • Murray, B. E., K. V. Singh, M. Markowitz, H. A. Lopardo, J. E. Patterson, M. J. Zervos, E. Rubeglio, G. M. Eliopolos, L. B. Rice, F. W. Goldstein, S. G. Jenkins, G. M. Caputo, R. Nasmass, L. S. Moore, E. S. Wong, and G. Weinstock. 1991 Evidence for clonal spread of a single strain of β-lactamase-producing Enterococcus faecalis to six hospitals in five states J. Infect. Dis. 163 780–785

    PubMed  CAS  Google Scholar 

  • Murray, B. E. 1992a β-lactamase-producing enterococci Antimicrob. Agents Chemother. 36 2355–2359

    PubMed  CAS  Google Scholar 

  • Murray, B. E., H. A. Lopardo, E. A. Rubeglio, M. Frosolono, and K. V. Singh. 1992b Intrahospital spread of a single gentamicin-resistant, β-lactamase-producing strain of Enterococcus faecalis in Argentina Antimicrob. Agents Chemother. 36 230–232

    PubMed  CAS  Google Scholar 

  • Murray, B. E. 1998 Diversity among multidrug-resistant enterococci Emerg. Infect. Dis. 4 37–47

    PubMed  CAS  Google Scholar 

  • Muscholl-Silberhorn, E. Rozdzinski, and R. Wirth. 2000 Aggregation substance of Enterococcus faecalis: a multifunctional adhesin Adv. Exp. Med. Biol. 485 75–83

    PubMed  CAS  Google Scholar 

  • Olmsted, S. B., G. M. Dunny, S. L. Erlandsen, and C. L. Wells. 1994 A plasmid-encoded surface protein on Enterococcus faecalis augments its internalization by cultured intestinal epithelial cells J. Infect. Dis. 170 1549–1556

    PubMed  CAS  Google Scholar 

  • Ostrowsky, B. E., N. C. Clark, C. Thauvin-Eliopoulos, L. Venkataraman, M. H. Samore, F. C. Tenover, G. M. Eliopoulos, R. C. Moellering Jr., and H. S. Gold. 1999 A cluster of VanD vancomycin-resistant Enterococcus faecium: molecular characterization and clinical epidemiology J. Infect. Dis. 180 1177–1185

    PubMed  CAS  Google Scholar 

  • Palepou, M. F., A. M. Adebiyi, C. H. Tremlett, L. B. Jensen, and N. Woodford. 1998 Molecular analysis of diverse elements mediating VanA glycopeptide resistance in enterococci J. Antimicrob. Chemother. 42 605–612

    PubMed  CAS  Google Scholar 

  • Pepper, K, C. Le Bouguenec, G. de Cespedes, and T. Horaud. 1986 Dispersal of a plasmid-borne chloramphenicol resistance gene in streptococcal and enterococcal plasmids Plasmid 16 195–203

    PubMed  CAS  Google Scholar 

  • Pepper, K., T. Horaud, C. Le Bouguenec, and G. de Cespedes. 1987 Location of antibiotic resistance markers in clinical isolates of Enterococcus faecalis with similar antibiotypes Antimicrob. Agents Chemother. 31 1394–1402

    PubMed  CAS  Google Scholar 

  • Perichon, B., P. Reynolds, and P. Courvalin. 1997 VanD-type glycopeptide-resistant Enterococcus faecium BM4339 Antimicrob. Agents Chemother. 41 2016–2018

    PubMed  CAS  Google Scholar 

  • Perkins, J. B., and P. Youngman. 1983 Streptococcal plasmid pAMα1 is a composite of two separable replicons, one of which is closely related to Bacillus plasmid pBC16 J. Bacteriol. 155 607–615

    PubMed  CAS  Google Scholar 

  • Perkins, J. B., and P. Youngman. 1984 A physical and functional analysis of Tn917, a Streptococcus transposon in the Tn3 family that functions in Bacillus Plasmid 12 119–138

    PubMed  CAS  Google Scholar 

  • Platt, T. B., and E. M. Foster. 1957 Products of glucose metabolism by homofermentative streptococci under anaerobic conditions J. Bacteriol. 75 453–459

    Google Scholar 

  • Poolman, B., A. J. M. Driessen, and W. N. Konings. 1987 Regulation of arginine-ornithine exchange and the arginine deiminase pathway in Streptococcus lactis J. Bacteriol. 169 5597–5604

    PubMed  CAS  Google Scholar 

  • Portillo, A., F. Ruiz-Larrea, M. Zarazaga, A. Alonso, J. L. Martinez, and C. Torres. 2000 Macrolide resistance genes in Enterococcus spp Antimicrob. Agents Chemother. 44 967–971

    PubMed  CAS  Google Scholar 

  • Poyart-Salmeron, C. P. Trieu-Cuot, P. Carlier, and P. Courvalin. 1990 The integration-excision system of the conjugative transposon Tn1545 is structurally and functionally related to those of the lambdoid phages Molec. Microbiol. 4 1523–1521

    Google Scholar 

  • Pritchard, G. G., and J. W. T. Wimpenny. 1978 Cytochrome formation, oxygen-induced proton extrusion and respiratory activity in Streptococcus faecalis var. Zymogenes grown in the presence of haematin J. Gen. Microbiol. 104 15–22

    PubMed  CAS  Google Scholar 

  • Prystowsky, J., F. Siddiqui, J. Chosay, D. L. Shinabarger, J. Millichap, L. R. Peterson, and G. A. Noskin. 2001 Resistance to Linezolid: Characterization of mutations in rRNA and comparison of their occurrences in vancomycin-resistant enterococci Antimicrob. Agents Chemother. 45 2154–2156

    PubMed  CAS  Google Scholar 

  • Pugh, S. Y. R., and C. J. Knowles. 1983 Synthesis of catalase by “Streptococcus faecalis subsp. Zyogenes” Arch. Microbiol. 136 60–63

    PubMed  CAS  Google Scholar 

  • Quintiliani Jr., R., and P. Courvalin. 1994 Conjugal transfer of the vancomycin resistance determinant vanB between enterococci involves the movement of large genetic elements from chromosome to chromosome FEMS Microbiol. Lett. 119 359–363

    PubMed  CAS  Google Scholar 

  • Quintiliani Jr., R., and P. Courvalin. 1996 Characterization of Tn1547, a composite transposon flanked by the IS16 and IS256-like elements, that confers vancomycin resistance in Enterococcus faecalis BM4281 Gene 172 1–8

    PubMed  CAS  Google Scholar 

  • Rakita, R. M., N. N. Vanek, K. Jacues-Palaz, M. Mee, M. M. Mariscalco, G. M. Dunny, M. Snuggs, W. B. Van Winkle, and S. I. Simon. 1999 Enterococcus faecalis bearing aggregation substance is resistant to killing by human neutrophils despite phagocytosis and neutrophil activation Infect. Immun. 67 6067–6075

    PubMed  CAS  Google Scholar 

  • Raycroft, R. E., and L. N. Zimmerman. 1964 New mode of genetic transfer in Streptococcus faecalis var. liquefaciens J. Bacteriol. 87 799–801

    PubMed  CAS  Google Scholar 

  • Reizer, J., J. Deutscher, and M. H. Saier, Jr. 1989 Metabolite-sensitive, ATP-dependent, protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system in Gram-positive bacteria Biochimie 71 989–996

    PubMed  CAS  Google Scholar 

  • Reynolds, P. E., F. Depardieu, S. Dutka-Malen, M. Arthur, and P. Courvalin. 1994a Glycopeptide resistance mediated by enterococcal transposon Tn1546 requires production of VanX for hydrolysis of D-alanyl-D-alanine Molec. Microbiol. 13 1065–1070

    CAS  Google Scholar 

  • Reynolds, P. E., H. M. Snaith, A. J. Maguire, S. Dutka-Malen, and P. Courvalin. 1994b Analysis of peptidoglycan precursors in vancomycin resistant Enterococcus gallinarum BM4174 Biochem. J. 301 5–8

    PubMed  CAS  Google Scholar 

  • Rice, L. B., and A. S. Thorisdottir. 1994 The prevalence of sequences homologous to IS256 in clinical enterococcal isolates Plasmid 32 344–349

    PubMed  CAS  Google Scholar 

  • Rice, L. B., L. L. Carias, and S. H. Marshall. 1995 Tn5384, a composite enterococcal mobile element conferring resistance to erythromycin and gentamicin whose ends are directly repeated copies of IS256 Antimicrob. Agents Chemother. 39 1147–1153

    PubMed  CAS  Google Scholar 

  • Rice, L. B., and L. L. Carias. 1998a Transfer of Tn5385, a composite multiresistance chromosomal element from Enterococcus faecalis J. Bacteriol. 180 714–721

    PubMed  CAS  Google Scholar 

  • Rice, L. B., L. L. Carias, C. J. Donskey, and S. D. Rudin. 1998b Transferable, plasmid-mediated VanB-type glycopeptide rsistance in Enterococcus faecium Antimicrob. Agents Chemother. 42 963–964

    PubMed  CAS  Google Scholar 

  • Ridenhour, M. B., H. M. Fletcher, J. E. Mortensen, and L. Daneo-Moore. 1996 A novel tetracycline-resistant determinant, tet(U), is encoded on the plasmid pKQ10 in Enterococcus faecium Plasmid 35 71–80

    PubMed  CAS  Google Scholar 

  • Ritchey, T. W., and H. W. Seeley. 1974 Cytochromes in Streptococcus faecalis var. zymogenes grown in a haematin-containing medium J. Gen. Microbiol. 85 220–228

    PubMed  CAS  Google Scholar 

  • Ritchey, T. W., and H. W. Seeley. 1976 Distribution of cytochrome-like respiration in streptococci J. Gen. Microbiol. 93 195–203

    PubMed  CAS  Google Scholar 

  • Roberts, M. C., and S. L. Hillier. 1990 Genetic basis of tetracycline resistance in urogenital bacteria Antimicrob. Agents Chemother. 34 261–264

    PubMed  CAS  Google Scholar 

  • Roberts, M. C. 1997 Genetic mobility and distribution of tetracycline resistance determinants In: D. J. Chadwick (Ed.) Antibiotic Resistance: Origins, Evolution, Selection, and Spread John Wiley, Chichester, UK 206–218

    Google Scholar 

  • Roberts, M. C., J. Sutcliffe, P. Courvalin, L. B. Jensen, J. Rood, and H. Seppala. 1999 Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants Antimicrob. Agents Chemother. 43 2823–2830

    PubMed  CAS  Google Scholar 

  • Rollins, L. D., L. N. Lee, and D. J. LeBlanc. 1985 Evidence for a disseminated erythromycin resistance determinant mediated by Tn917-like sequences among group D streptococci isolated from pigs, chickens, and humans Antimicrob. Agents Chemother. 27 439–444

    PubMed  CAS  Google Scholar 

  • Rudiger, H. W., U. Langenbeck, and H. W. Goedde. 1972 Oxidation of branched chain alpha-ketoacids in Streptococcus faecalis and its dependence on lipoic acid Hoppe-Seyler’s Z. Physiol. Chem. 353 875–882

    PubMed  CAS  Google Scholar 

  • Rudy, C. K., and J. R. Scott. 1996 Length of coupling sequence of Tn916 J. Bacteriol. 176 3386–3388

    Google Scholar 

  • Rudy, C. K., J. R. Scott, and G. Churchward. 1997 DNA binding by the Xis protein of the conjugative transposon Tn916 J. Bacteriol. 179 2567–2572

    PubMed  CAS  Google Scholar 

  • Ryu, H.-W., K.-H. Kang, J.-G. Pan, and H.-N. Chang. 2001 Characteristics and glycerol metabolism of fumarate-reducing Enterococcus faecalis RKY1 Biotechnol. Bioengin. 72 119–124

    CAS  Google Scholar 

  • Saier, M. H., Jr., M. J. Fagan, C. Hoischen, and J. Reizer. 1993 Transport Mechanisms In: A. L. Sonenshein, J. A. Hoch, and R. Losick (Eds.) Bacillus subtilis and Other Gram-positive Bacteria ASM Press, Washington, DC 133–156

    Google Scholar 

  • Salyers, A. A., N. B. Shoemaker, A. M. Stevens, and L.-Y. Li. 1995 Conjugative transposons: an unusual and diverse set of integrated gene transfer elements Microbiol. Rev. 59 579–590

    PubMed  CAS  Google Scholar 

  • Sarantinopoulos, P., G. Kalantzopoulos, and E. Tsakalidou. 2001 Citrate metabolism by Enterococcus faecalis FAIRE-E 229 Appl. Environ. Microbiol. 67 5482–5487

    PubMed  CAS  Google Scholar 

  • Schlessinger, D. (Ed.). 1982 II. Streptococcal Genetics In: Microbiology-1982 ASM Press, Washington, DC 79–257

    Google Scholar 

  • Schlievert, P. M., P. J. Gahr, A. P. Assimacopoulos, M. M. Dinges, J. A. Stoehr, J. W. Harmala, H. Hirt, and G. M. Dunny. 1998 Aggregation and binding substances enhance pathogenicity in rabbit models of Enterococcus faecalis endocarditis Infect. Immun. 66 218–223

    PubMed  CAS  Google Scholar 

  • Schmidt, H. L., W. Stocklein, J. Danzer, P. Kirch, and B. Limbach. 1986 Isolation and properties of an H2O-forming NADH oxidase from Streptococcus faecalis Eur. J. Biochem. 156 149–155

    PubMed  CAS  Google Scholar 

  • Scott, J. R., P. A. Kirchman, and M. G. Caparon. 1988 An intermediate in transposition of the conjugative transposon Tn916 Proc. Natl. Acad. Sci., USA 85 4809–4813

    PubMed  CAS  Google Scholar 

  • Scott, J. R. 1993 Conjugative transposons In: A. L. Sonenshein, J. A. Hoch, and R. Losick (Eds.) Bacillus subtilis and Other Gram-positive Bacteria ASM Press, Washington, DC 597–614

    Google Scholar 

  • Scott, J. R., F. Bringel, D, Marra, G. Van Alstine, and C. K. Rudy. 1994 Conjugative transposition of Tn916: preferred targets and evidence for conjugative transfer of a single strand and for a double-stranded circular intermediate Molec. Microbiol. 11 1099–1108

    CAS  Google Scholar 

  • Scott, J. R., and G. G. Churchward. 1995 Conjugative transposition Ann. Rev. Microbiol. 49 367–397

    CAS  Google Scholar 

  • Senghas, E., J. M. Jones, M. Yamamoto, C. Gawron-Burke, and D. B. Clewell. 1988 Genetic organization of the bacterial conjugative transposon Tn916 J. Bacteriol. 170 245–249

    PubMed  CAS  Google Scholar 

  • Shaw, W. V. 1983 Chloramphenicol acetyltransferase: enzymology and molecular biology Crit. Rev. Biochem. 14 1–47

    CAS  Google Scholar 

  • Shaw, J., and D. B. Clewell. 1985 Complete nucleotide sequence of macrolide-lincosamide-streptogramin B-resistance transposon Tn917 in Streptococcus faecalis J. Bacteriol. 164 782–796

    PubMed  CAS  Google Scholar 

  • Shibata, C., T. Ehara, K. Tomura, K. Igarashi, and H. Kobayashi. 1992 Gene structure of Enterococcus hirae (Streptococcus faecalis) F1F0-ATPase, which functions as a regulator of cytoplasmic pH J. Bacteriol. 174 6117–6124

    PubMed  CAS  Google Scholar 

  • Showsh, S. A., E. H. De Boever, and D. B. Clewel. 2001 Vancomycin resistance plasmid in Enterococcus faecalis that encodes sensitivity to a sex pheromone also produced by Staphylococcus Antimicrob. Agents Chemother. 45 2177–2178

    PubMed  CAS  Google Scholar 

  • Silva, J. C., A. Haldimann, M. K. Prahalad, C. T. Walsh, and B. L. Wanner. 1998 In vivo characterization of the type A and B vancomycin-resistant enterococci (VRE) VanRS two-component systems in Escherichia coli: a nonpathogenic model for studying the VRE signal transduction pathways Proc. Natl. Acad. Sci. USA 95 11951–11956

    PubMed  CAS  Google Scholar 

  • Simon, J.-P., and V. Stalon. 1982a Enzymes of agmatine degradation and the control of their synthesis in Streptococcus faecalis J. Bacteriol. 152 676–681

    PubMed  CAS  Google Scholar 

  • Simon, J. P., B. Wargnies, and V. Stalon. 1982b Control of enzyme synthesis in the arginine deiminase pathway of Streptococcus faecalis J. Bacteriol. 150 1085–1090

    PubMed  CAS  Google Scholar 

  • Simpson, S. J., M. R. Bendall, A. F. Egan, R. Vink, and P. J. Rogers. 1983 High-field phosphorus NMR studies of the stoichiometry of the lactate/proton carrier in Streptococcus faecalis Eur. J. Biochem. 136 63–69

    PubMed  CAS  Google Scholar 

  • Smalley, A. J., P. Jahrling, and P. J. Van Demark. 1968 Molar growth yields as evidence for oxidative phosphorylation in Streptococcus faecalis strain 10C1 J. Bacteriol. 96 1595–1600

    PubMed  CAS  Google Scholar 

  • Smith, C. J., G. D. Tribble, and D. P. Bayley. 1998 Genetic elements of Bacteroides species: a moving story Plasmid 40 12–29

    PubMed  CAS  Google Scholar 

  • Snoep, J. L., M. J. Teixeira de Mattos, P. W. Postma, and O. M. Neijssel. 1990 Involvement of pyruvate dehydrogenase in product formation in pyruvate-limited anaerobic chemostat cultures of Enterococcus faecalis NCTC 775 Arch. Microbiol. 154 50–55

    PubMed  CAS  Google Scholar 

  • Snoep, J. L., M. R. de Graef, M. J. Teixeira de Mattos, and O. M. Neijssel. 1992a Pyruvate catabolism during transient state conditions in chemostat cultures of Enterococcus faecalis MCTC 775: importance of internal pyruvate concentrations and NADH/NAD+ ratios J. Gen. Microbiol. 138 2015–2020

    PubMed  CAS  Google Scholar 

  • Snoep, J. L., A. H. Westphal, J. A. Benen, M. J. Teixeira de Mattos, O. M. Neijssel, and A. de Kok. 1992b Isolation and characterisation of the pyruvate dehydrogenase complex of anaerobically grown Enterococcus faecalis NCTC 775 Eur. J. Biochem. 203 245–250

    PubMed  CAS  Google Scholar 

  • Snoep, J. L., M. van Bommel, F. Lubbers, M. J. Teixeira de Mattos, and O. M. Neijssel. 1993 The role of lipoic acid in product formation by Enterococcus faecalis NCTC 775 and reconstitution in vivo and in vitro of the pyruvate dehydrogenase complex J. Gen. Microbiol. 139 1325–1329

    PubMed  CAS  Google Scholar 

  • Snyder, L., and W. Champness. 1997 Transposition and Nonhomologous Recombination Molecular Genetics of Bacteria ASM Press, Washington, DC 199–201

    Google Scholar 

  • Sobis-Glinkowska, M., J. Mikucki, and P. Sisiecki. 2001 Animal body iron sources utilized in vitro by enterococci Medycyna Doswiadcalna i Mikrobiologia 53 9–15

    CAS  Google Scholar 

  • Sokatch, T. J., and I. C. Gunsalus. 1957 Aldonic acid metabolism. I. Pathway of carbon in an inducible gluconate fermentation by Streptococcus faecalis J. Bacteriol. 73 452–460

    PubMed  CAS  Google Scholar 

  • Sokatch, T. J. 1960 Ribose biosynthesis by Streptococcus faecalis Arch. Biochem. Biophys. 91 240–246

    CAS  Google Scholar 

  • Sougakoff, W., B. Papadopoulou, P. Nordmann, and P. Courvalin. 1987 Nucleotide sequence and distribution of gene tetO encoding tetracycline resistance in Campylobacter coli FEMS Microbiol. Lett. 44 153–159

    CAS  Google Scholar 

  • Strausak, D., and M. Solioz. 1994 Regulation of sodium transport in Enterococcus hirae EBEC Short Rep. 8 77

    Google Scholar 

  • Sussmuth, S. D., A. Muscholl-Silberhorn, R. Wirth, M. Susa, R. Marre, and E. Rozdzinski. 2000 Aggregation substance promotes adherence, phagocytosis, and intracellular survival of Enterococcus faecalis within human macrophages and suppresses respiratory burst Infect. Immun. 68 4900–4906

    PubMed  CAS  Google Scholar 

  • Sutcliffe, J. A. Tait-Kamradt, and L. Wondrack. 1996 Streptococcus pneumoniae and Streptococcus pyogenes resistant to macrolides but sensitive to clindamycin: a common restance pattern mediated by an efflux system Antimicrob. Agents Chemother. 40 1817–1824

    PubMed  CAS  Google Scholar 

  • Swaney, S. M., H. Aoki, M. C. Ganoza, and D. L. Shinebarger. 1998 The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria Antimicrob. Agents Chemother. 42 3251–3255

    PubMed  CAS  Google Scholar 

  • Szarapinska-Kwaszewska, J., and J. Mikucki. 2001 Utilization of exogenous siderophores by enterococci Medycyna Doswiadczalna i Mikrobiologia. 53 233–243

    PubMed  CAS  Google Scholar 

  • Tait-Kamradt, A., J. Clancy, M. Cronan, F. Dib-Hajj, L. Wondrack, W. Yuan, and J. Sutcliffe. 1997 mefE is necessary for the erythromycin-resistant M phenotype in Streptococcus pneumoniae Antimicrob. Agents Chemother. 41 2251–2255

    PubMed  CAS  Google Scholar 

  • Tanaka, T, and M. Ogura. 1998 A novel Bacillus natto plasmid pLS32 capable of replication in Bacillus subtilis FEBS Lett. 422 243–246

    PubMed  CAS  Google Scholar 

  • Thal, L. A., J. W. Chow, D. B. Clewell, and M. J. Zervos. 1994 Tn924, a chromosome-borne transposon encoding high-level gentamicin resistance in Enterococcus faecalis Antimicrob. Agents Chemother. 38 1152–1156

    PubMed  CAS  Google Scholar 

  • Toala, P., A. McDonald, C. Wilcox, and M. Finland. 1969 Susceptibility of group D streptococcus (enterococcus) to 21 antibiotics in vitro, with special reference to species differences Am. J. Med. Sci. 258 416–430

    PubMed  CAS  Google Scholar 

  • Tomich, P. K., F. Y. An, and D. B. Clewell. 1980 Properties of erythromycin-inducible transposon Tn917 in Streptococcus faecalis J. Bacteriol. 141 1366–1374

    PubMed  CAS  Google Scholar 

  • Tomura, T., T. Hirano, T. Ito, and M. Yoshioka. 1973 Transmission of bactericinogenicity by conjugation in group D streptococci Japanese J. Microbiol. 17 445–452

    CAS  Google Scholar 

  • Trieu-Cuot, P., and P. Courvalin. 1983 Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3′5″-aminoglycoside phosphotransferase type III Gene 23 331–341

    PubMed  CAS  Google Scholar 

  • Trieu-Cuot, P., G. de Cespedes, F. Bentorcha, F. Delbos, E. Gaspar, and T. Horaud. 1993 Study of heterogeneity of chloramphenicol acetyltransferase (CAT) genes in streptococci and enterococci by polymerase chain reaction: characterization of a new CAT determinant Antimicrob. Agents Chemother. 37 2593–2598

    PubMed  CAS  Google Scholar 

  • Tsai, S. F., M. J. Zervos, D. B. Clewell, S. M. Donabedian, D. F. Sahm, and J. W. Chow. 1998 A new high-level gentamicin resistance gene, aph2(2″)-Id, in Enterococcus sp Antimicrob. Agents Chemother. 42 1229–1232

    PubMed  CAS  Google Scholar 

  • van der Vlag, J. K., K. van Dam, and P. W. Postma. 1994 Quantification of the regulation of glycerol and maltose metabolism by IIAGlc of the phosphoenolpyruvate-dependent glucose phosphotransferase system in salmonella typhimurium J. Bacteriol. 176 3518–3526

    PubMed  Google Scholar 

  • Vanek, N. N., S. I. Simon, K. Jacques-Palaz, M. M. Mariscalco, G. M. Dunny, and R. M. Rakita. 1999 Enterococcus faecalis aggregation substance promotes opsonin-independent binding to human neutrophils via a complement receptor type-3-mediated mechanism FEMS Immunol. Med. Microbiol. 26 49–60

    PubMed  CAS  Google Scholar 

  • Ward, D. E., R. P. Ross, C. C. van der Weijden, J. L. Snoep, and A. Claiborne. 1999 Catabolism of branched-chain alpha-ketoacids in Enterococcus faecalis: the bkd gene cluster, enzymes, and metabolic route J. Bacteriol. 181 5433–5442

    PubMed  CAS  Google Scholar 

  • Ward, D. E., C. C. van der Weijden, M. J. van der Merwe, H. V. Westerhoff, A. Claiborne, and J. L. Snoep. 2000 Branched chain alpha-ketoacid catabolism via the gene products of the bdk operon in enterococcus: a new, secreted metabolite serving as a temporary redox sink J. Bacteriol. 182 3239–3246

    PubMed  CAS  Google Scholar 

  • Waser, M., D. Hess-Bienz, K. Davies, and M. Solioz. 1992 Cloning and disruption of a putative NaH-antiporter gene of Enterococcus hirae J. Biol. Chem. 267 5396–5400

    PubMed  CAS  Google Scholar 

  • Weaver, K. E., D. B. Clewell, and F. An. 1993 Identification, characterization, and nucleotide sequence of a region of Enterococcus faecalis pheromone-responsive plasmid pAD1 capable of autonomous replication J. Bacteriol. 175 1900–1909

    PubMed  CAS  Google Scholar 

  • Weaver, K. E., and D. J. Tritle. 1994 Identification and characterization of an Enterococcus faecalis plasmid pAD1-encoded stability determinant which produces two small RNA molecules necessary for its function Plasmid 32 168–181

    PubMed  CAS  Google Scholar 

  • Weaver, K. E., K. D. Jensen, A. Colwell, and S. I. Sriram. 1996 Functional analysis of the Enterococcus faecalis plasmid pAD1-encoded stability determinant par Molec. Microbiol. 20 53–63

    CAS  Google Scholar 

  • Weaver, K. E., K. D. Walz, and M. S. Heine. 1998 Isolation of a derivative of Escherichia coli-Enterococcus faecalis shuttle vector pAM401 temperature sensitive for maintenance in E. faecalis and its use in evaluating the mechanism of pAD1 par-dependent plasmid stabilization Plasmid 40 225–232

    PubMed  CAS  Google Scholar 

  • Weaver, K. E., L. B. Rice, and G. Churchwood. 2002 Plasmids and Transposons In: M. S. Gilmore, D. B. Clewell, P. Courvalin, G. M. Dunny, B. E. Murray, and L. B. Rice (Eds.) The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance ASM Press, Washington, DC 219–263

    Google Scholar 

  • Weaver, K. E., D. M. Weaver, C. L. Wells, C. M. Waters, M. E. Gardner, and E. A. Ehli. 2003 The Enterococcus faecalis plasmid pAD1-encoded Fst toxin affects membrane permeability and alters cellular responses to lantibiotics J. Bacteriol 185 2169–2177

    PubMed  CAS  Google Scholar 

  • Weisblum, B. 1995 Erythromycin resistance by ribosome modification Antimicrob. Agents Chemother. 39 577–585

    PubMed  CAS  Google Scholar 

  • Whittenbury, R. 1964 Hydrogene peroxide formation and catalase activity in the lactic acid bacteria J. Gen. Microbiol. 35 13–26

    PubMed  CAS  Google Scholar 

  • Whittenbury, R. 1978 Biochemical characteristics of Streptococcus species Soc. Appl. Bacteriol. Symp. Ser. 7 51–79

    PubMed  CAS  Google Scholar 

  • Willems, R. J. L., J. Top, N. van den Braak, A. van Belkum, D. J. Mevius, G. Hendriks, M. van Santen-Verheuvel, and J. D. A. van Embden. 1999 Molecular diversity and evolutionary relationships of Tn1546-like elements in enterococci from humans and animals Antimicrob. Agents Chemother. 43 483–491

    PubMed  CAS  Google Scholar 

  • Winstedt, L., L. Frankenberg, L. Hederstedt, and C. von Wachenfeldt. 2000 Enterococcus faecalis V583 contains a cytochrome bd-type respiratory oxidase J. Bacteriol. 182 3863–3866

    PubMed  CAS  Google Scholar 

  • Winters, M. D., T. L. Schlinke, W. A. Joyce, W. R. Glore, and M. M. Huycke. 1998 Prospective case-cohort control study of intestinal colonization with enterococci that produce extracellular superoxide and the risk for colorectal adenomas or cancer Am. J. Gastroenterol. 93 2491–2500

    PubMed  CAS  Google Scholar 

  • Wirth, R. 1994 The sex pheromone system of Enterococcus faecalis. More than just a plasmid-collection mechanism? Eur. J. Biochem. 222 235–246

    PubMed  CAS  Google Scholar 

  • Wirth, R., A. Muscholl, and G. Wanner. 1996 The role of pheromones in bacterial interaction Trends Microbiol. 4 96–103

    PubMed  CAS  Google Scholar 

  • Wirth, R. 2000 Sex pheromones and gene transfer in Enterococcus faecalis Res. Microbiol. 151 493–496

    PubMed  CAS  Google Scholar 

  • Wittenberger, C. L., and N. Angelo. 1970 Purification and properties of a fructose-1,6-diphosphate-activated dehydrogenase from Streptococcus faecalis J. Bacteriol. 101 717–724

    PubMed  CAS  Google Scholar 

  • Wittenberger, C. L., M. P. Palumbo, R. B. Bridges, and A. T. Brown. 1971 Mechanisms for regulating the activity of constitutive glucose degradative pathways in Streptococcus faecalis J. Dent. Res. 50 1094–1103

    CAS  Google Scholar 

  • Wood, W. A. 1961 Fermentation of Carbohydrates and Related Compounds In: I. C. Gunsalus and R. Y. Stanier (Eds.) The Bacteria Academic Press, New York, NY 2 59–149

    Google Scholar 

  • Woodford, N., D. Morrison, A. P. Johnson, A. C. Bateman, J. G. Hastings, T. S. Elliott, and B. Cookson. 1995 Plasmid-mediated vanB glycopeptide resistance in enterococci Microb. Drug Resist. 1 235–240

    PubMed  CAS  Google Scholar 

  • Woodford, N. 1998a Glycopeptide-resistant enterococci: a decade of experience J. Med. Microbiol. 47 849–862

    PubMed  CAS  Google Scholar 

  • Woodford, N., A. M. Adebiyi, M. F. Palepou, and B. D. Cookson. 1998b Diversity of VanA glycopeptide resistance elements in enterococci from humans and nonhuman sources Antimicrob. Agents Chemother. 42 502–508

    PubMed  CAS  Google Scholar 

  • Wunderli-Ye, H., and M. Solioz. 1999 Copper homeostasis in Enterococcus hirae Adv. Exp. Med. Biol. 448 255–264

    PubMed  CAS  Google Scholar 

  • Yamazaki, A., K. Watanabe, Y. Nishimura, and T. Kamihara. 1976 Mutants of Streptococcus faecalis concerning pyruvate dehydrogenation FEBS Lett. 64 364–8

    PubMed  CAS  Google Scholar 

  • Yasumura, K., K. Igarashi, and Y. Kakinuma. 2002 Promoter analysis of the sodium-responsive V-ATPase (ntp) operon in Enterococcus hirae Arch. Microbiol. 178 172–179

    PubMed  CAS  Google Scholar 

  • Yother, J., P. Trieu-Cuot, T. R. Klaenhammer, and W. M. de Vos. 2002 Genetics of streptococci, lactococci, and enterococci: review of the sixth international conference J. Bacteriol. 184 6085–6092 (and pp. 6316–6386 for specific papers)

    PubMed  CAS  Google Scholar 

  • Zilhao, R., B. Papadopoulou, and P. Courvalin. 1988 Occurrence of the Campylobacter resistance gene tetO in Enterococcus and Streptococcus spp Antimicrob. Agents Chemother. 32 1793–1796

    PubMed  CAS  Google Scholar 

  • Zorzi, W., X. Y. Zhou, O. Dardenne, J. Lamotte, D. Raze, J. Pierre, L. Gutmann, and J. Coyette. 1996 Structure of the low-affinity penicillin-binding protein 5 PBP5fm in wild-type and highly penicillin-resistant strains of Enterococcus faecium J. Bacteriol. 127 4948–4957

    Google Scholar 

  • Zurenko, G. E., W. M. Todd, B. Hafkin, B. Meyers, C. Kauffman, J. Bock, J. Slightom, and D. Shinabarger. 1999. Development of linezolid-resistant Enterococcus faecium in two compassionate use program patients treated with linezolid: Abstracts of the 39th Interscience Conference. Antimicrob. Agents Chemother. Abstr. C-848.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Leblanc, D.J. (2006). Enterococcus . In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30744-3_6

Download citation

Publish with us

Policies and ethics