Skip to main content

Voronoi constructs

  • Reference work entry
  • First Online:
Encyclopedia of Operations Research and Management Science

INTRODUCTION

Given a finite set S of “sites” p i located in Euclidean space ℜd, the Voronoi polyhedron V(p j) of site p j is the set of all points p ∈ ℜd which are at least as close to site p j as to any other site p i.

Such a Voronoi polyhedron (also called “ Thiessen polygon” or “ Wigner-Seitz cell”) is convex, its facets determined by perpendicular bisectors — (hyper)planes or lines of equal Euclidean distance from two distinct sites. The Voronoi polyhedra V(p i), p iS cover the space ℜd and define a polyhedral cell-complex known as a Voronoi diagram (Voronoi, 1908) or Dirichlet tesselation (Dirichlet, 1850). For a survey, consult Aurenhammer (1991); also see the texts by Okabe, Boots, and Sugihara (1992); Preparata and Shannos (1985); Edelsbrunner (1987); and Goodman and O'Rourke (1997).

The cells of the dual complex are convex and, in general, simplicial. By partitioning nonsimplicial cells of the dual complex into simplices, the Delaunay triangulation results (Figure 1). It...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 532.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, P.K. (1991). Intersection and Decomposition Algorithms for Planar Arrangements, Cambridge University Press, New York.

    Google Scholar 

  2. Aurenhammer, F. (1987). “Power diagrams: properties, algorithms, and applications,” SIAM Jl. Comput., 16, 78–96.

    Google Scholar 

  3. Aurenhammer, F. (1991). “Voronoi Diagrams — a survey of a fundamental geometric data structure,” ACM Computing Surveys, 23, 345–405.

    Google Scholar 

  4. Bentley, J.L., Weide, B.W., and Yao, A.C. (1980). “Optimal expected-time algorithms for closest point problems,” ACM Trans. Math. Software, 6, 563–580.

    Google Scholar 

  5. Delaunay, B. (1934). “Sur la sphère vide,” Bull. Acad. Sci. USSR VII: Class. Sci. Mat. Nat., 793–800.

    Google Scholar 

  6. Dirichlet, G.L. (1850). “Uber die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen,” Jl. Reine Angew. Math., 40, 209–227.

    Google Scholar 

  7. De Floriani, L. and Puppo, E. (1988). “Constrained Delaunay triangulation for multiresolution surface description,” 9th International Conference on Pattern Recognition, Rome, Italy, 1, 566–569.

    Google Scholar 

  8. Dwyer, R.A. (1991). “Higher-dimensional Voronoi diagrams in linear expected time,” Discrete Comput. Geom., 6, 343–367.

    Google Scholar 

  9. Edelsbrunner, H., O'Rourke, J., and Seidel, R. (1986). “Constructing arrangements of lines and hyperplanes with applications,” SIAM Jl. Comput., 15, 341–363.

    Google Scholar 

  10. Gellatly, B.J. and Finney, J.L. (1982). “Characterizations of models of multicomponent amorphous metals: the radical alternative to the Voronoi polyhedron,” Jl. of Non-Cryst-Solids, 50, 313–329.

    Google Scholar 

  11. Lawson, C.L. (1977). “Software for C 1 surface interpolation,” in Mathematical Software III, J.R. Rice, ed., Academic Press, New York.

    Google Scholar 

  12. Miles, R.E. (1970). “On the homogeneous planar Poisson process,” Mathematical Biosciences, 6, 85–127.

    Google Scholar 

  13. Okabe, A., Boots, B., and Sugihara, K. (1992). Spatial Tesselations: Concepts and Applications of Voronoi Diagrams, Wiley, New York.

    Google Scholar 

  14. Shamos, M.I. and Hoey, D. (1975). “Closest-point problems,” Proc. 16th Annu. IEEE Sympos. Found. Comput. Sci., 151–162.

    Google Scholar 

  15. Stoyan, D., Kendall, W.S., and Mecke, J. (1987). Stochastic Geometry and Its Applications, Wiley, New York.

    Google Scholar 

  16. Toussaint, G.T. (1980). “The relative neighborhood graph of a finite planar set,” Pattern Recognition, 12, 261–268.

    Google Scholar 

  17. Voronoi, M.G. (1908). “Nouvelles applications des paramètres continus à la théorie des formes quadratiques,” Jl. Reine Angew. Math., 134, 198–287.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this entry

Cite this entry

Beichl, I., Bernal, J., Witzgall, C., Sullivan, F. (2001). Voronoi constructs . In: Gass, S.I., Harris, C.M. (eds) Encyclopedia of Operations Research and Management Science. Springer, New York, NY. https://doi.org/10.1007/1-4020-0611-X_1115

Download citation

  • DOI: https://doi.org/10.1007/1-4020-0611-X_1115

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-7923-7827-3

  • Online ISBN: 978-1-4020-0611-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics